Visual and rapid fluorescence sensing for hexavalent chromium by hydroxypropyl chitosan passivated bismuth-based perovskite quantum dots

Hydroxypropyl chitosan-Cs 3 Bi 2 Cl 9 perovskite quantum dots (HPCS-PQDs) were synthesized by a simple ligand-assisted reprecipitation method via green hydroxypropyl chitosan as the ligand and used as the specific signal of a fluorescence probe to achieve the highly sensitive detection of hexavalent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mikrochimica acta (1966) 2024-04, Vol.191 (4), p.219-219, Article 219
Hauptverfasser: Gao, Dangge, Zhang, Ailin, Lyu, Bin, Ma, Jianzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 219
container_issue 4
container_start_page 219
container_title Mikrochimica acta (1966)
container_volume 191
creator Gao, Dangge
Zhang, Ailin
Lyu, Bin
Ma, Jianzhong
description Hydroxypropyl chitosan-Cs 3 Bi 2 Cl 9 perovskite quantum dots (HPCS-PQDs) were synthesized by a simple ligand-assisted reprecipitation method via green hydroxypropyl chitosan as the ligand and used as the specific signal of a fluorescence probe to achieve the highly sensitive detection of hexavalent chromium (Cr(VI)) and compared with chitosan-Cs 3 Bi 2 Cl 9 QDs (CS-PQDs). HPCS-PQDs with multiple active hydroxyl passivations were found to enhance the photoluminescence quantum yield (PLQY) by 90%. After being placed in aqueous solution and irradiated with ultraviolet light for 96 h the fluorescence intensity of HPCS-PQDs remained above 60%. The blue emission of HPCS-PQDs has a good selectivity and short response time (30 s) for Cr(VI). A good linear relationship is established between the fluorescence quenching rate of the HPCS-PQDs and concentration of Cr(VI) from 0.8 to 400 µM, with a limit of detection (LOD) of 0.27 µM. The fluorescence quenching mechanism is the static quenching and internal filtration effect caused by HPCS-PQDs forming a non-fluorescent ground-state complex with Cr(VI). The sensor can not only be used to detect Cr(VI) in water samples with high accuracy but can also be prepared as a test paper for the detection for Cr(VI). Graphical Abstract
doi_str_mv 10.1007/s00604-024-06251-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3003439895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2987212280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-fa7a86de7c22bccc5e02742a9b211dfe473348bb656efe030d367328816ef6513</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS0EopfCC7BAltiwCYztxM5dooo_qRIbYGs5yaTXJbFTj3PVvAGPjcstILFgMbJG883xGR3Gngt4LQDMGwLQUFcgS2nZiEo8YDtRK101YNRDtgOQulLayDP2hOgaQBgt68fsTLWNgtqYHfvxzdPqJu7CwJNb_MDHaY0JqcfQIycM5MMVH2PiB7x1RzdhyLw_pDj7debdxg_bkOLttqS4bFOZ-BzJBb44In90GQfeeZrXfKg6R6VbMMUjffcZ-c3qQi4qQ8z0lD0a3UT47P49Z1_fv_ty8bG6_Pzh08Xby6pXpsnV6Ixr9YCml7Lr-75BkKaWbt9JIYYRa6NU3XadbjSOCAqGcr-SbStKrxuhztmrk24xfLMiZTv7cuw0uYBxJasAVK327b4p6Mt_0Ou4plDcWblvjRRStlAoeaL6FIkSjnZJfnZpswLsXU72lJMtOdlfOdk7Fy_updduxuHPyu9gCqBOAJVRuML09-__yP4ElGyhAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2987212280</pqid></control><display><type>article</type><title>Visual and rapid fluorescence sensing for hexavalent chromium by hydroxypropyl chitosan passivated bismuth-based perovskite quantum dots</title><source>Springer Nature - Complete Springer Journals</source><creator>Gao, Dangge ; Zhang, Ailin ; Lyu, Bin ; Ma, Jianzhong</creator><creatorcontrib>Gao, Dangge ; Zhang, Ailin ; Lyu, Bin ; Ma, Jianzhong</creatorcontrib><description>Hydroxypropyl chitosan-Cs 3 Bi 2 Cl 9 perovskite quantum dots (HPCS-PQDs) were synthesized by a simple ligand-assisted reprecipitation method via green hydroxypropyl chitosan as the ligand and used as the specific signal of a fluorescence probe to achieve the highly sensitive detection of hexavalent chromium (Cr(VI)) and compared with chitosan-Cs 3 Bi 2 Cl 9 QDs (CS-PQDs). HPCS-PQDs with multiple active hydroxyl passivations were found to enhance the photoluminescence quantum yield (PLQY) by 90%. After being placed in aqueous solution and irradiated with ultraviolet light for 96 h the fluorescence intensity of HPCS-PQDs remained above 60%. The blue emission of HPCS-PQDs has a good selectivity and short response time (30 s) for Cr(VI). A good linear relationship is established between the fluorescence quenching rate of the HPCS-PQDs and concentration of Cr(VI) from 0.8 to 400 µM, with a limit of detection (LOD) of 0.27 µM. The fluorescence quenching mechanism is the static quenching and internal filtration effect caused by HPCS-PQDs forming a non-fluorescent ground-state complex with Cr(VI). The sensor can not only be used to detect Cr(VI) in water samples with high accuracy but can also be prepared as a test paper for the detection for Cr(VI). Graphical Abstract</description><identifier>ISSN: 0026-3672</identifier><identifier>EISSN: 1436-5073</identifier><identifier>DOI: 10.1007/s00604-024-06251-1</identifier><identifier>PMID: 38530477</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Analytical Chemistry ; Aqueous solutions ; Bismuth ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Chitosan ; Fluorescent indicators ; Hexavalent chromium ; Ligands ; Luminous intensity ; Microengineering ; Nanochemistry ; Nanotechnology ; Original Paper ; Perovskites ; Photoluminescence ; Quantum dots ; Quenching ; Ultraviolet radiation ; Water sampling</subject><ispartof>Mikrochimica acta (1966), 2024-04, Vol.191 (4), p.219-219, Article 219</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-fa7a86de7c22bccc5e02742a9b211dfe473348bb656efe030d367328816ef6513</citedby><cites>FETCH-LOGICAL-c375t-fa7a86de7c22bccc5e02742a9b211dfe473348bb656efe030d367328816ef6513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00604-024-06251-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00604-024-06251-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38530477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Dangge</creatorcontrib><creatorcontrib>Zhang, Ailin</creatorcontrib><creatorcontrib>Lyu, Bin</creatorcontrib><creatorcontrib>Ma, Jianzhong</creatorcontrib><title>Visual and rapid fluorescence sensing for hexavalent chromium by hydroxypropyl chitosan passivated bismuth-based perovskite quantum dots</title><title>Mikrochimica acta (1966)</title><addtitle>Microchim Acta</addtitle><addtitle>Mikrochim Acta</addtitle><description>Hydroxypropyl chitosan-Cs 3 Bi 2 Cl 9 perovskite quantum dots (HPCS-PQDs) were synthesized by a simple ligand-assisted reprecipitation method via green hydroxypropyl chitosan as the ligand and used as the specific signal of a fluorescence probe to achieve the highly sensitive detection of hexavalent chromium (Cr(VI)) and compared with chitosan-Cs 3 Bi 2 Cl 9 QDs (CS-PQDs). HPCS-PQDs with multiple active hydroxyl passivations were found to enhance the photoluminescence quantum yield (PLQY) by 90%. After being placed in aqueous solution and irradiated with ultraviolet light for 96 h the fluorescence intensity of HPCS-PQDs remained above 60%. The blue emission of HPCS-PQDs has a good selectivity and short response time (30 s) for Cr(VI). A good linear relationship is established between the fluorescence quenching rate of the HPCS-PQDs and concentration of Cr(VI) from 0.8 to 400 µM, with a limit of detection (LOD) of 0.27 µM. The fluorescence quenching mechanism is the static quenching and internal filtration effect caused by HPCS-PQDs forming a non-fluorescent ground-state complex with Cr(VI). The sensor can not only be used to detect Cr(VI) in water samples with high accuracy but can also be prepared as a test paper for the detection for Cr(VI). Graphical Abstract</description><subject>Analytical Chemistry</subject><subject>Aqueous solutions</subject><subject>Bismuth</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chitosan</subject><subject>Fluorescent indicators</subject><subject>Hexavalent chromium</subject><subject>Ligands</subject><subject>Luminous intensity</subject><subject>Microengineering</subject><subject>Nanochemistry</subject><subject>Nanotechnology</subject><subject>Original Paper</subject><subject>Perovskites</subject><subject>Photoluminescence</subject><subject>Quantum dots</subject><subject>Quenching</subject><subject>Ultraviolet radiation</subject><subject>Water sampling</subject><issn>0026-3672</issn><issn>1436-5073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQhS0EopfCC7BAltiwCYztxM5dooo_qRIbYGs5yaTXJbFTj3PVvAGPjcstILFgMbJG883xGR3Gngt4LQDMGwLQUFcgS2nZiEo8YDtRK101YNRDtgOQulLayDP2hOgaQBgt68fsTLWNgtqYHfvxzdPqJu7CwJNb_MDHaY0JqcfQIycM5MMVH2PiB7x1RzdhyLw_pDj7debdxg_bkOLttqS4bFOZ-BzJBb44In90GQfeeZrXfKg6R6VbMMUjffcZ-c3qQi4qQ8z0lD0a3UT47P49Z1_fv_ty8bG6_Pzh08Xby6pXpsnV6Ixr9YCml7Lr-75BkKaWbt9JIYYRa6NU3XadbjSOCAqGcr-SbStKrxuhztmrk24xfLMiZTv7cuw0uYBxJasAVK327b4p6Mt_0Ou4plDcWblvjRRStlAoeaL6FIkSjnZJfnZpswLsXU72lJMtOdlfOdk7Fy_updduxuHPyu9gCqBOAJVRuML09-__yP4ElGyhAw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Gao, Dangge</creator><creator>Zhang, Ailin</creator><creator>Lyu, Bin</creator><creator>Ma, Jianzhong</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20240401</creationdate><title>Visual and rapid fluorescence sensing for hexavalent chromium by hydroxypropyl chitosan passivated bismuth-based perovskite quantum dots</title><author>Gao, Dangge ; Zhang, Ailin ; Lyu, Bin ; Ma, Jianzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-fa7a86de7c22bccc5e02742a9b211dfe473348bb656efe030d367328816ef6513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analytical Chemistry</topic><topic>Aqueous solutions</topic><topic>Bismuth</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chitosan</topic><topic>Fluorescent indicators</topic><topic>Hexavalent chromium</topic><topic>Ligands</topic><topic>Luminous intensity</topic><topic>Microengineering</topic><topic>Nanochemistry</topic><topic>Nanotechnology</topic><topic>Original Paper</topic><topic>Perovskites</topic><topic>Photoluminescence</topic><topic>Quantum dots</topic><topic>Quenching</topic><topic>Ultraviolet radiation</topic><topic>Water sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Dangge</creatorcontrib><creatorcontrib>Zhang, Ailin</creatorcontrib><creatorcontrib>Lyu, Bin</creatorcontrib><creatorcontrib>Ma, Jianzhong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Mikrochimica acta (1966)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Dangge</au><au>Zhang, Ailin</au><au>Lyu, Bin</au><au>Ma, Jianzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual and rapid fluorescence sensing for hexavalent chromium by hydroxypropyl chitosan passivated bismuth-based perovskite quantum dots</atitle><jtitle>Mikrochimica acta (1966)</jtitle><stitle>Microchim Acta</stitle><addtitle>Mikrochim Acta</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>191</volume><issue>4</issue><spage>219</spage><epage>219</epage><pages>219-219</pages><artnum>219</artnum><issn>0026-3672</issn><eissn>1436-5073</eissn><abstract>Hydroxypropyl chitosan-Cs 3 Bi 2 Cl 9 perovskite quantum dots (HPCS-PQDs) were synthesized by a simple ligand-assisted reprecipitation method via green hydroxypropyl chitosan as the ligand and used as the specific signal of a fluorescence probe to achieve the highly sensitive detection of hexavalent chromium (Cr(VI)) and compared with chitosan-Cs 3 Bi 2 Cl 9 QDs (CS-PQDs). HPCS-PQDs with multiple active hydroxyl passivations were found to enhance the photoluminescence quantum yield (PLQY) by 90%. After being placed in aqueous solution and irradiated with ultraviolet light for 96 h the fluorescence intensity of HPCS-PQDs remained above 60%. The blue emission of HPCS-PQDs has a good selectivity and short response time (30 s) for Cr(VI). A good linear relationship is established between the fluorescence quenching rate of the HPCS-PQDs and concentration of Cr(VI) from 0.8 to 400 µM, with a limit of detection (LOD) of 0.27 µM. The fluorescence quenching mechanism is the static quenching and internal filtration effect caused by HPCS-PQDs forming a non-fluorescent ground-state complex with Cr(VI). The sensor can not only be used to detect Cr(VI) in water samples with high accuracy but can also be prepared as a test paper for the detection for Cr(VI). Graphical Abstract</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><pmid>38530477</pmid><doi>10.1007/s00604-024-06251-1</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-3672
ispartof Mikrochimica acta (1966), 2024-04, Vol.191 (4), p.219-219, Article 219
issn 0026-3672
1436-5073
language eng
recordid cdi_proquest_miscellaneous_3003439895
source Springer Nature - Complete Springer Journals
subjects Analytical Chemistry
Aqueous solutions
Bismuth
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Chitosan
Fluorescent indicators
Hexavalent chromium
Ligands
Luminous intensity
Microengineering
Nanochemistry
Nanotechnology
Original Paper
Perovskites
Photoluminescence
Quantum dots
Quenching
Ultraviolet radiation
Water sampling
title Visual and rapid fluorescence sensing for hexavalent chromium by hydroxypropyl chitosan passivated bismuth-based perovskite quantum dots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A34%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20and%20rapid%20fluorescence%20sensing%20for%20hexavalent%20chromium%20by%20hydroxypropyl%20chitosan%20passivated%20bismuth-based%20perovskite%20quantum%20dots&rft.jtitle=Mikrochimica%20acta%20(1966)&rft.au=Gao,%20Dangge&rft.date=2024-04-01&rft.volume=191&rft.issue=4&rft.spage=219&rft.epage=219&rft.pages=219-219&rft.artnum=219&rft.issn=0026-3672&rft.eissn=1436-5073&rft_id=info:doi/10.1007/s00604-024-06251-1&rft_dat=%3Cproquest_cross%3E2987212280%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2987212280&rft_id=info:pmid/38530477&rfr_iscdi=true