Partly linear single-index cure models with a nonparametric incidence link function

In cancer studies, it is commonplace that a fraction of patients participating in the study are cured, such that not all of them will experience a recurrence, or death due to cancer. Also, it is plausible that some covariates, such as the treatment assigned to the patients or demographic characteris...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods in medical research 2024-03, Vol.33 (3), p.498-514
Hauptverfasser: Lee, Chun Yin, Wong, Kin Yau, Bandyopadhyay, Dipankar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In cancer studies, it is commonplace that a fraction of patients participating in the study are cured, such that not all of them will experience a recurrence, or death due to cancer. Also, it is plausible that some covariates, such as the treatment assigned to the patients or demographic characteristics, could affect both the patients’ survival rates and cure/incidence rates. A common approach to accommodate these features in survival analysis is to consider a mixture cure survival model with the incidence rate modeled by a logistic regression model and latency part modeled by the Cox proportional hazards model. These modeling assumptions, though typical, restrict the structure of covariate effects on both the incidence and latency components. As a plausible recourse to attain flexibility, we study a class of semiparametric mixture cure models in this article, which incorporates two single-index functions for modeling the two regression components. A hybrid nonparametric maximum likelihood estimation method is proposed, where the cumulative baseline hazard function for uncured subjects is estimated nonparametrically, and the two single-index functions are estimated via Bernstein polynomials. Parameter estimation is carried out via a curated expectation-maximization algorithm. We also conducted a large-scale simulation study to assess the finite-sample performance of the estimator. The proposed methodology is illustrated via application to two cancer datasets.
ISSN:0962-2802
1477-0334
1477-0334
DOI:10.1177/09622802241227960