BioDeepfuse: a hybrid deep learning approach with integrated feature extraction techniques for enhanced non-coding RNA classification
The accurate classification of non-coding RNA (ncRNA) sequences is pivotal for advanced non-coding genome annotation and analysis, a fundamental aspect of genomics that facilitates understanding of ncRNA functions and regulatory mechanisms in various biological processes. While traditional machine l...
Gespeichert in:
Veröffentlicht in: | RNA biology 2024-12, Vol.21 (1), p.410-421 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 421 |
---|---|
container_issue | 1 |
container_start_page | 410 |
container_title | RNA biology |
container_volume | 21 |
creator | Avila Santos, Anderson P. de Almeida, Breno L. S. Bonidia, Robson P. Stadler, Peter F. Stefanic, Polonca Mandic-Mulec, Ines Rocha, Ulisses Sanches, Danilo S. de Carvalho, André C.P.L.F. |
description | The accurate classification of non-coding RNA (ncRNA) sequences is pivotal for advanced non-coding genome annotation and analysis, a fundamental aspect of genomics that facilitates understanding of ncRNA functions and regulatory mechanisms in various biological processes. While traditional machine learning approaches have been employed for distinguishing ncRNA, these often necessitate extensive feature engineering. Recently, deep learning algorithms have provided advancements in ncRNA classification. This study presents BioDeepFuse, a hybrid deep learning framework integrating convolutional neural networks (CNN) or bidirectional long short-term memory (BiLSTM) networks with handcrafted features for enhanced accuracy. This framework employs a combination of k-mer one-hot, k-mer dictionary, and feature extraction techniques for input representation. Extracted features, when embedded into the deep network, enable optimal utilization of spatial and sequential nuances of ncRNA sequences. Using benchmark datasets and real-world RNA samples from bacterial organisms, we evaluated the performance of BioDeepFuse. Results exhibited high accuracy in ncRNA classification, underscoring the robustness of our tool in addressing complex ncRNA sequence data challenges. The effective melding of CNN or BiLSTM with external features heralds promising directions for future research, particularly in refining ncRNA classifiers and deepening insights into ncRNAs in cellular processes and disease manifestations. In addition to its original application in the context of bacterial organisms, the methodologies and techniques integrated into our framework can potentially render BioDeepFuse effective in various and broader domains. |
doi_str_mv | 10.1080/15476286.2024.2329451 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_miscellaneous_3003437473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2725291de7df4245ba84e26d93cbc716</doaj_id><sourcerecordid>3003437473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-fd8c896c969bfc8acbd478ce7408a941b74967758d81d4f3f2a68119ef81e5493</originalsourceid><addsrcrecordid>eNp9ks9u1DAQxiMEoqXwCCAfuWSJHTu2uUBb_lWqQEJwthx7vHGVtRfbS9kH4L1x2LaiF062Zr75zWjma5rnuFvhTnSvMKN8IGJYkY7QFemJpAw_aI4xY6wVTNCHy5_ydhEdNU9yvuq6fhCSPW6OesGI4JIfN7_PfHwHsHW7DK-RRtN-TN4iW0NoBp2CD2ukt9sUtZnQtS8T8qHAOukCFjnQZZcAwa-StCk-BlTATMH_2EFGLiYEYdLBVGmIoTXRLrivn0-RmXXO3nmjl6qnzSOn5wzPbt6T5vuH99_OP7WXXz5enJ9etob1rLTOCiPkYOQgR2eENqOlXBjgtBNaUjxyKgfOmbACW-p6R_QgMJbgBAZGZX_SXBy4NuortU1-o9NeRe3V30BMa6VT8WYGRThhRGIL3DpKKBu1oEAGK3szGo6HynpzYG134wasgVB3MN-D3s8EP6l1_KlwJwfRdwvh5Q0hxWVhRW18NjDPOkDcZdXXg9GeU95XKTtITYo5J3B3fXCnFj-oWz-oxQ_qxg-17sW_Q95V3RqgCt4eBD7Uc230dUyzVUXv55hcqqfzdY7_9_gDTO3H1w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003437473</pqid></control><display><type>article</type><title>BioDeepfuse: a hybrid deep learning approach with integrated feature extraction techniques for enhanced non-coding RNA classification</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Taylor & Francis (Open Access Collection)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Avila Santos, Anderson P. ; de Almeida, Breno L. S. ; Bonidia, Robson P. ; Stadler, Peter F. ; Stefanic, Polonca ; Mandic-Mulec, Ines ; Rocha, Ulisses ; Sanches, Danilo S. ; de Carvalho, André C.P.L.F.</creator><creatorcontrib>Avila Santos, Anderson P. ; de Almeida, Breno L. S. ; Bonidia, Robson P. ; Stadler, Peter F. ; Stefanic, Polonca ; Mandic-Mulec, Ines ; Rocha, Ulisses ; Sanches, Danilo S. ; de Carvalho, André C.P.L.F.</creatorcontrib><description>The accurate classification of non-coding RNA (ncRNA) sequences is pivotal for advanced non-coding genome annotation and analysis, a fundamental aspect of genomics that facilitates understanding of ncRNA functions and regulatory mechanisms in various biological processes. While traditional machine learning approaches have been employed for distinguishing ncRNA, these often necessitate extensive feature engineering. Recently, deep learning algorithms have provided advancements in ncRNA classification. This study presents BioDeepFuse, a hybrid deep learning framework integrating convolutional neural networks (CNN) or bidirectional long short-term memory (BiLSTM) networks with handcrafted features for enhanced accuracy. This framework employs a combination of k-mer one-hot, k-mer dictionary, and feature extraction techniques for input representation. Extracted features, when embedded into the deep network, enable optimal utilization of spatial and sequential nuances of ncRNA sequences. Using benchmark datasets and real-world RNA samples from bacterial organisms, we evaluated the performance of BioDeepFuse. Results exhibited high accuracy in ncRNA classification, underscoring the robustness of our tool in addressing complex ncRNA sequence data challenges. The effective melding of CNN or BiLSTM with external features heralds promising directions for future research, particularly in refining ncRNA classifiers and deepening insights into ncRNAs in cellular processes and disease manifestations. In addition to its original application in the context of bacterial organisms, the methodologies and techniques integrated into our framework can potentially render BioDeepFuse effective in various and broader domains.</description><identifier>ISSN: 1547-6286</identifier><identifier>EISSN: 1555-8584</identifier><identifier>DOI: 10.1080/15476286.2024.2329451</identifier><identifier>PMID: 38528797</identifier><language>eng</language><publisher>United States: Taylor & Francis</publisher><subject>Algorithms ; biological processes ; Deep Learning ; feature extraction ; gene regulation ; model performance ; neural networks ; Neural Networks, Computer ; Non-coding RNA ; Research Paper ; RNA ; RNA identification ; RNA, Untranslated - genetics</subject><ispartof>RNA biology, 2024-12, Vol.21 (1), p.410-421</ispartof><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024</rights><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-fd8c896c969bfc8acbd478ce7408a941b74967758d81d4f3f2a68119ef81e5493</citedby><cites>FETCH-LOGICAL-c535t-fd8c896c969bfc8acbd478ce7408a941b74967758d81d4f3f2a68119ef81e5493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/15476286.2024.2329451$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/15476286.2024.2329451$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,2102,27502,27924,27925,59143,59144</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38528797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Avila Santos, Anderson P.</creatorcontrib><creatorcontrib>de Almeida, Breno L. S.</creatorcontrib><creatorcontrib>Bonidia, Robson P.</creatorcontrib><creatorcontrib>Stadler, Peter F.</creatorcontrib><creatorcontrib>Stefanic, Polonca</creatorcontrib><creatorcontrib>Mandic-Mulec, Ines</creatorcontrib><creatorcontrib>Rocha, Ulisses</creatorcontrib><creatorcontrib>Sanches, Danilo S.</creatorcontrib><creatorcontrib>de Carvalho, André C.P.L.F.</creatorcontrib><title>BioDeepfuse: a hybrid deep learning approach with integrated feature extraction techniques for enhanced non-coding RNA classification</title><title>RNA biology</title><addtitle>RNA Biol</addtitle><description>The accurate classification of non-coding RNA (ncRNA) sequences is pivotal for advanced non-coding genome annotation and analysis, a fundamental aspect of genomics that facilitates understanding of ncRNA functions and regulatory mechanisms in various biological processes. While traditional machine learning approaches have been employed for distinguishing ncRNA, these often necessitate extensive feature engineering. Recently, deep learning algorithms have provided advancements in ncRNA classification. This study presents BioDeepFuse, a hybrid deep learning framework integrating convolutional neural networks (CNN) or bidirectional long short-term memory (BiLSTM) networks with handcrafted features for enhanced accuracy. This framework employs a combination of k-mer one-hot, k-mer dictionary, and feature extraction techniques for input representation. Extracted features, when embedded into the deep network, enable optimal utilization of spatial and sequential nuances of ncRNA sequences. Using benchmark datasets and real-world RNA samples from bacterial organisms, we evaluated the performance of BioDeepFuse. Results exhibited high accuracy in ncRNA classification, underscoring the robustness of our tool in addressing complex ncRNA sequence data challenges. The effective melding of CNN or BiLSTM with external features heralds promising directions for future research, particularly in refining ncRNA classifiers and deepening insights into ncRNAs in cellular processes and disease manifestations. In addition to its original application in the context of bacterial organisms, the methodologies and techniques integrated into our framework can potentially render BioDeepFuse effective in various and broader domains.</description><subject>Algorithms</subject><subject>biological processes</subject><subject>Deep Learning</subject><subject>feature extraction</subject><subject>gene regulation</subject><subject>model performance</subject><subject>neural networks</subject><subject>Neural Networks, Computer</subject><subject>Non-coding RNA</subject><subject>Research Paper</subject><subject>RNA</subject><subject>RNA identification</subject><subject>RNA, Untranslated - genetics</subject><issn>1547-6286</issn><issn>1555-8584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks9u1DAQxiMEoqXwCCAfuWSJHTu2uUBb_lWqQEJwthx7vHGVtRfbS9kH4L1x2LaiF062Zr75zWjma5rnuFvhTnSvMKN8IGJYkY7QFemJpAw_aI4xY6wVTNCHy5_ydhEdNU9yvuq6fhCSPW6OesGI4JIfN7_PfHwHsHW7DK-RRtN-TN4iW0NoBp2CD2ukt9sUtZnQtS8T8qHAOukCFjnQZZcAwa-StCk-BlTATMH_2EFGLiYEYdLBVGmIoTXRLrivn0-RmXXO3nmjl6qnzSOn5wzPbt6T5vuH99_OP7WXXz5enJ9etob1rLTOCiPkYOQgR2eENqOlXBjgtBNaUjxyKgfOmbACW-p6R_QgMJbgBAZGZX_SXBy4NuortU1-o9NeRe3V30BMa6VT8WYGRThhRGIL3DpKKBu1oEAGK3szGo6HynpzYG134wasgVB3MN-D3s8EP6l1_KlwJwfRdwvh5Q0hxWVhRW18NjDPOkDcZdXXg9GeU95XKTtITYo5J3B3fXCnFj-oWz-oxQ_qxg-17sW_Q95V3RqgCt4eBD7Uc230dUyzVUXv55hcqqfzdY7_9_gDTO3H1w</recordid><startdate>20241231</startdate><enddate>20241231</enddate><creator>Avila Santos, Anderson P.</creator><creator>de Almeida, Breno L. S.</creator><creator>Bonidia, Robson P.</creator><creator>Stadler, Peter F.</creator><creator>Stefanic, Polonca</creator><creator>Mandic-Mulec, Ines</creator><creator>Rocha, Ulisses</creator><creator>Sanches, Danilo S.</creator><creator>de Carvalho, André C.P.L.F.</creator><general>Taylor & Francis</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241231</creationdate><title>BioDeepfuse: a hybrid deep learning approach with integrated feature extraction techniques for enhanced non-coding RNA classification</title><author>Avila Santos, Anderson P. ; de Almeida, Breno L. S. ; Bonidia, Robson P. ; Stadler, Peter F. ; Stefanic, Polonca ; Mandic-Mulec, Ines ; Rocha, Ulisses ; Sanches, Danilo S. ; de Carvalho, André C.P.L.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-fd8c896c969bfc8acbd478ce7408a941b74967758d81d4f3f2a68119ef81e5493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>biological processes</topic><topic>Deep Learning</topic><topic>feature extraction</topic><topic>gene regulation</topic><topic>model performance</topic><topic>neural networks</topic><topic>Neural Networks, Computer</topic><topic>Non-coding RNA</topic><topic>Research Paper</topic><topic>RNA</topic><topic>RNA identification</topic><topic>RNA, Untranslated - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avila Santos, Anderson P.</creatorcontrib><creatorcontrib>de Almeida, Breno L. S.</creatorcontrib><creatorcontrib>Bonidia, Robson P.</creatorcontrib><creatorcontrib>Stadler, Peter F.</creatorcontrib><creatorcontrib>Stefanic, Polonca</creatorcontrib><creatorcontrib>Mandic-Mulec, Ines</creatorcontrib><creatorcontrib>Rocha, Ulisses</creatorcontrib><creatorcontrib>Sanches, Danilo S.</creatorcontrib><creatorcontrib>de Carvalho, André C.P.L.F.</creatorcontrib><collection>Access via Taylor & Francis (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>RNA biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avila Santos, Anderson P.</au><au>de Almeida, Breno L. S.</au><au>Bonidia, Robson P.</au><au>Stadler, Peter F.</au><au>Stefanic, Polonca</au><au>Mandic-Mulec, Ines</au><au>Rocha, Ulisses</au><au>Sanches, Danilo S.</au><au>de Carvalho, André C.P.L.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BioDeepfuse: a hybrid deep learning approach with integrated feature extraction techniques for enhanced non-coding RNA classification</atitle><jtitle>RNA biology</jtitle><addtitle>RNA Biol</addtitle><date>2024-12-31</date><risdate>2024</risdate><volume>21</volume><issue>1</issue><spage>410</spage><epage>421</epage><pages>410-421</pages><issn>1547-6286</issn><eissn>1555-8584</eissn><abstract>The accurate classification of non-coding RNA (ncRNA) sequences is pivotal for advanced non-coding genome annotation and analysis, a fundamental aspect of genomics that facilitates understanding of ncRNA functions and regulatory mechanisms in various biological processes. While traditional machine learning approaches have been employed for distinguishing ncRNA, these often necessitate extensive feature engineering. Recently, deep learning algorithms have provided advancements in ncRNA classification. This study presents BioDeepFuse, a hybrid deep learning framework integrating convolutional neural networks (CNN) or bidirectional long short-term memory (BiLSTM) networks with handcrafted features for enhanced accuracy. This framework employs a combination of k-mer one-hot, k-mer dictionary, and feature extraction techniques for input representation. Extracted features, when embedded into the deep network, enable optimal utilization of spatial and sequential nuances of ncRNA sequences. Using benchmark datasets and real-world RNA samples from bacterial organisms, we evaluated the performance of BioDeepFuse. Results exhibited high accuracy in ncRNA classification, underscoring the robustness of our tool in addressing complex ncRNA sequence data challenges. The effective melding of CNN or BiLSTM with external features heralds promising directions for future research, particularly in refining ncRNA classifiers and deepening insights into ncRNAs in cellular processes and disease manifestations. In addition to its original application in the context of bacterial organisms, the methodologies and techniques integrated into our framework can potentially render BioDeepFuse effective in various and broader domains.</abstract><cop>United States</cop><pub>Taylor & Francis</pub><pmid>38528797</pmid><doi>10.1080/15476286.2024.2329451</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1547-6286 |
ispartof | RNA biology, 2024-12, Vol.21 (1), p.410-421 |
issn | 1547-6286 1555-8584 |
language | eng |
recordid | cdi_proquest_miscellaneous_3003437473 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Access via Taylor & Francis (Open Access Collection); EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms biological processes Deep Learning feature extraction gene regulation model performance neural networks Neural Networks, Computer Non-coding RNA Research Paper RNA RNA identification RNA, Untranslated - genetics |
title | BioDeepfuse: a hybrid deep learning approach with integrated feature extraction techniques for enhanced non-coding RNA classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A59%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BioDeepfuse:%20a%20hybrid%20deep%20learning%20approach%20with%20integrated%20feature%20extraction%20techniques%20for%20enhanced%20non-coding%20RNA%20classification&rft.jtitle=RNA%20biology&rft.au=Avila%20Santos,%20Anderson%20P.&rft.date=2024-12-31&rft.volume=21&rft.issue=1&rft.spage=410&rft.epage=421&rft.pages=410-421&rft.issn=1547-6286&rft.eissn=1555-8584&rft_id=info:doi/10.1080/15476286.2024.2329451&rft_dat=%3Cproquest_doaj_%3E3003437473%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3003437473&rft_id=info:pmid/38528797&rft_doaj_id=oai_doaj_org_article_2725291de7df4245ba84e26d93cbc716&rfr_iscdi=true |