Strongly Adhesive, Self-Healing, Hemostatic Hydrogel for the Repair of Traumatic Brain Injury
With wide clinical demands, therapies for traumatic brain injury (TBI) are a major problem in surgical procedures and after major trauma. Due to the difficulty in regeneration of neurons or axons after injury, as well as the inhibition of blood vessel growth by the formation of neural scars, existin...
Gespeichert in:
Veröffentlicht in: | Biomacromolecules 2024-04, Vol.25 (4), p.2462-2475 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2475 |
---|---|
container_issue | 4 |
container_start_page | 2462 |
container_title | Biomacromolecules |
container_volume | 25 |
creator | Dong, Zuoxiang Zhao, Jihu Xu, Jian Deng, Wenshuai Sun, Peng |
description | With wide clinical demands, therapies for traumatic brain injury (TBI) are a major problem in surgical procedures and after major trauma. Due to the difficulty in regeneration of neurons or axons after injury, as well as the inhibition of blood vessel growth by the formation of neural scars, existing treatment measures have limited effectiveness in repairing brain tissue. Herein, the biomultifunctional hydrogels are developed for TBI treatment based on the Schiff base reaction of calcium ion (Ca2+)-cross-linked oxidized sodium alginate (OSA) and carboxymethyl chitosan (CMCS). The obtained COCS hydrogel exhibits excellent adhesion to wet tissues, self-repair capability, and antimicrobial properties. What’s particularly interesting is that the addition of Ca2+ increases the hydrogel’s extensibility, enhancing its hemostatic capabilities. Biological assessments indicate that the COCS hydrogel demonstrates excellent biocompatibility, hemostatic properties, and the ability to promote arterial vessel repair. Importantly, the COCS hydrogel promotes the growth of cerebral microvessels by upregulating CD31, accelerates the proliferation of astrocytes, enhances the expression of GFAP, and stimulates the expression of neuron-specific markers such as NEUN and β-tubulin. All of these findings highlight that the strongly adhesive, self-healing, hemostatic hydrogel shows great potential for the repair of traumatic brain injury and other tissue repair therapy. |
doi_str_mv | 10.1021/acs.biomac.3c01406 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3003436175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3003436175</sourcerecordid><originalsourceid>FETCH-LOGICAL-a293t-8586d44e85e5306e5621a88c1722d16b67637b48d97ab04b89a4c8e8e58bc7943</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMojq8_4EKydDEdk-bZpQ5qBUHwsZSSprczHdpmTFqh_95qR5eu7ll858D9EDqnZEFJTK-MDYu8co2xC2YJ5UTuoSMqYhlxSeL9nywipRI1Q8chbAghCePiEM2YFoxJRo7Q-0vnXbuqB3xdrCFUnzDHL1CXUQqmrtrVHKfQuNCZrrI4HQrvVlDj0nncrQE_w9ZUHrsSv3rTNz_QjTdVix_aTe-HU3RQmjrA2e6eoLe729dlGj0-3T8srx8jEyesi7TQsuActADBiAQhY2q0tlTFcUFlLpVkKue6SJTJCc91YrjVoEHo3KqEsxN0Oe1uvfvoIXRZUwULdW1acH3IGCGMM0mVGNF4Qq13IXgos62vGuOHjJLsW2s2as0mrdlO61i62O33eQPFX-XX4wgsJuC7vHG9b8d3_1v8Avm9hD8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003436175</pqid></control><display><type>article</type><title>Strongly Adhesive, Self-Healing, Hemostatic Hydrogel for the Repair of Traumatic Brain Injury</title><source>American Chemical Society</source><source>MEDLINE</source><creator>Dong, Zuoxiang ; Zhao, Jihu ; Xu, Jian ; Deng, Wenshuai ; Sun, Peng</creator><creatorcontrib>Dong, Zuoxiang ; Zhao, Jihu ; Xu, Jian ; Deng, Wenshuai ; Sun, Peng</creatorcontrib><description>With wide clinical demands, therapies for traumatic brain injury (TBI) are a major problem in surgical procedures and after major trauma. Due to the difficulty in regeneration of neurons or axons after injury, as well as the inhibition of blood vessel growth by the formation of neural scars, existing treatment measures have limited effectiveness in repairing brain tissue. Herein, the biomultifunctional hydrogels are developed for TBI treatment based on the Schiff base reaction of calcium ion (Ca2+)-cross-linked oxidized sodium alginate (OSA) and carboxymethyl chitosan (CMCS). The obtained COCS hydrogel exhibits excellent adhesion to wet tissues, self-repair capability, and antimicrobial properties. What’s particularly interesting is that the addition of Ca2+ increases the hydrogel’s extensibility, enhancing its hemostatic capabilities. Biological assessments indicate that the COCS hydrogel demonstrates excellent biocompatibility, hemostatic properties, and the ability to promote arterial vessel repair. Importantly, the COCS hydrogel promotes the growth of cerebral microvessels by upregulating CD31, accelerates the proliferation of astrocytes, enhances the expression of GFAP, and stimulates the expression of neuron-specific markers such as NEUN and β-tubulin. All of these findings highlight that the strongly adhesive, self-healing, hemostatic hydrogel shows great potential for the repair of traumatic brain injury and other tissue repair therapy.</description><identifier>ISSN: 1525-7797</identifier><identifier>ISSN: 1526-4602</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/acs.biomac.3c01406</identifier><identifier>PMID: 38533630</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alginates - pharmacology ; Anti-Bacterial Agents ; Brain ; Brain Injuries, Traumatic - drug therapy ; Chitosan ; Hemostatics - pharmacology ; Humans ; Hydrogels - pharmacology</subject><ispartof>Biomacromolecules, 2024-04, Vol.25 (4), p.2462-2475</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a293t-8586d44e85e5306e5621a88c1722d16b67637b48d97ab04b89a4c8e8e58bc7943</cites><orcidid>0000-0002-1931-3694 ; 0000-0002-7737-7688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biomac.3c01406$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biomac.3c01406$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38533630$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Zuoxiang</creatorcontrib><creatorcontrib>Zhao, Jihu</creatorcontrib><creatorcontrib>Xu, Jian</creatorcontrib><creatorcontrib>Deng, Wenshuai</creatorcontrib><creatorcontrib>Sun, Peng</creatorcontrib><title>Strongly Adhesive, Self-Healing, Hemostatic Hydrogel for the Repair of Traumatic Brain Injury</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>With wide clinical demands, therapies for traumatic brain injury (TBI) are a major problem in surgical procedures and after major trauma. Due to the difficulty in regeneration of neurons or axons after injury, as well as the inhibition of blood vessel growth by the formation of neural scars, existing treatment measures have limited effectiveness in repairing brain tissue. Herein, the biomultifunctional hydrogels are developed for TBI treatment based on the Schiff base reaction of calcium ion (Ca2+)-cross-linked oxidized sodium alginate (OSA) and carboxymethyl chitosan (CMCS). The obtained COCS hydrogel exhibits excellent adhesion to wet tissues, self-repair capability, and antimicrobial properties. What’s particularly interesting is that the addition of Ca2+ increases the hydrogel’s extensibility, enhancing its hemostatic capabilities. Biological assessments indicate that the COCS hydrogel demonstrates excellent biocompatibility, hemostatic properties, and the ability to promote arterial vessel repair. Importantly, the COCS hydrogel promotes the growth of cerebral microvessels by upregulating CD31, accelerates the proliferation of astrocytes, enhances the expression of GFAP, and stimulates the expression of neuron-specific markers such as NEUN and β-tubulin. All of these findings highlight that the strongly adhesive, self-healing, hemostatic hydrogel shows great potential for the repair of traumatic brain injury and other tissue repair therapy.</description><subject>Alginates - pharmacology</subject><subject>Anti-Bacterial Agents</subject><subject>Brain</subject><subject>Brain Injuries, Traumatic - drug therapy</subject><subject>Chitosan</subject><subject>Hemostatics - pharmacology</subject><subject>Humans</subject><subject>Hydrogels - pharmacology</subject><issn>1525-7797</issn><issn>1526-4602</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLxDAUhYMojq8_4EKydDEdk-bZpQ5qBUHwsZSSprczHdpmTFqh_95qR5eu7ll858D9EDqnZEFJTK-MDYu8co2xC2YJ5UTuoSMqYhlxSeL9nywipRI1Q8chbAghCePiEM2YFoxJRo7Q-0vnXbuqB3xdrCFUnzDHL1CXUQqmrtrVHKfQuNCZrrI4HQrvVlDj0nncrQE_w9ZUHrsSv3rTNz_QjTdVix_aTe-HU3RQmjrA2e6eoLe729dlGj0-3T8srx8jEyesi7TQsuActADBiAQhY2q0tlTFcUFlLpVkKue6SJTJCc91YrjVoEHo3KqEsxN0Oe1uvfvoIXRZUwULdW1acH3IGCGMM0mVGNF4Qq13IXgos62vGuOHjJLsW2s2as0mrdlO61i62O33eQPFX-XX4wgsJuC7vHG9b8d3_1v8Avm9hD8</recordid><startdate>20240408</startdate><enddate>20240408</enddate><creator>Dong, Zuoxiang</creator><creator>Zhao, Jihu</creator><creator>Xu, Jian</creator><creator>Deng, Wenshuai</creator><creator>Sun, Peng</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1931-3694</orcidid><orcidid>https://orcid.org/0000-0002-7737-7688</orcidid></search><sort><creationdate>20240408</creationdate><title>Strongly Adhesive, Self-Healing, Hemostatic Hydrogel for the Repair of Traumatic Brain Injury</title><author>Dong, Zuoxiang ; Zhao, Jihu ; Xu, Jian ; Deng, Wenshuai ; Sun, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a293t-8586d44e85e5306e5621a88c1722d16b67637b48d97ab04b89a4c8e8e58bc7943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alginates - pharmacology</topic><topic>Anti-Bacterial Agents</topic><topic>Brain</topic><topic>Brain Injuries, Traumatic - drug therapy</topic><topic>Chitosan</topic><topic>Hemostatics - pharmacology</topic><topic>Humans</topic><topic>Hydrogels - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Zuoxiang</creatorcontrib><creatorcontrib>Zhao, Jihu</creatorcontrib><creatorcontrib>Xu, Jian</creatorcontrib><creatorcontrib>Deng, Wenshuai</creatorcontrib><creatorcontrib>Sun, Peng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Zuoxiang</au><au>Zhao, Jihu</au><au>Xu, Jian</au><au>Deng, Wenshuai</au><au>Sun, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strongly Adhesive, Self-Healing, Hemostatic Hydrogel for the Repair of Traumatic Brain Injury</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2024-04-08</date><risdate>2024</risdate><volume>25</volume><issue>4</issue><spage>2462</spage><epage>2475</epage><pages>2462-2475</pages><issn>1525-7797</issn><issn>1526-4602</issn><eissn>1526-4602</eissn><abstract>With wide clinical demands, therapies for traumatic brain injury (TBI) are a major problem in surgical procedures and after major trauma. Due to the difficulty in regeneration of neurons or axons after injury, as well as the inhibition of blood vessel growth by the formation of neural scars, existing treatment measures have limited effectiveness in repairing brain tissue. Herein, the biomultifunctional hydrogels are developed for TBI treatment based on the Schiff base reaction of calcium ion (Ca2+)-cross-linked oxidized sodium alginate (OSA) and carboxymethyl chitosan (CMCS). The obtained COCS hydrogel exhibits excellent adhesion to wet tissues, self-repair capability, and antimicrobial properties. What’s particularly interesting is that the addition of Ca2+ increases the hydrogel’s extensibility, enhancing its hemostatic capabilities. Biological assessments indicate that the COCS hydrogel demonstrates excellent biocompatibility, hemostatic properties, and the ability to promote arterial vessel repair. Importantly, the COCS hydrogel promotes the growth of cerebral microvessels by upregulating CD31, accelerates the proliferation of astrocytes, enhances the expression of GFAP, and stimulates the expression of neuron-specific markers such as NEUN and β-tubulin. All of these findings highlight that the strongly adhesive, self-healing, hemostatic hydrogel shows great potential for the repair of traumatic brain injury and other tissue repair therapy.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38533630</pmid><doi>10.1021/acs.biomac.3c01406</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1931-3694</orcidid><orcidid>https://orcid.org/0000-0002-7737-7688</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-7797 |
ispartof | Biomacromolecules, 2024-04, Vol.25 (4), p.2462-2475 |
issn | 1525-7797 1526-4602 1526-4602 |
language | eng |
recordid | cdi_proquest_miscellaneous_3003436175 |
source | American Chemical Society; MEDLINE |
subjects | Alginates - pharmacology Anti-Bacterial Agents Brain Brain Injuries, Traumatic - drug therapy Chitosan Hemostatics - pharmacology Humans Hydrogels - pharmacology |
title | Strongly Adhesive, Self-Healing, Hemostatic Hydrogel for the Repair of Traumatic Brain Injury |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strongly%20Adhesive,%20Self-Healing,%20Hemostatic%20Hydrogel%20for%20the%20Repair%20of%20Traumatic%20Brain%20Injury&rft.jtitle=Biomacromolecules&rft.au=Dong,%20Zuoxiang&rft.date=2024-04-08&rft.volume=25&rft.issue=4&rft.spage=2462&rft.epage=2475&rft.pages=2462-2475&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/acs.biomac.3c01406&rft_dat=%3Cproquest_cross%3E3003436175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3003436175&rft_id=info:pmid/38533630&rfr_iscdi=true |