Haar basis and nonlinear modeling of complex systems

In this work we introduce a technique to perform nonlinear modeling of chaotic time series using the kernel method. The basic idea behind this method is to map the data into a high dimensional space via nonlinear mapping and do a linear regression in this space. Here we use a Haar wavelet-like kerne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. ST, Special topics Special topics, 2007-04, Vol.143 (1), p.261-264
Hauptverfasser: García, P., Merlitti, A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue 1
container_start_page 261
container_title The European physical journal. ST, Special topics
container_volume 143
creator García, P.
Merlitti, A.
description In this work we introduce a technique to perform nonlinear modeling of chaotic time series using the kernel method. The basic idea behind this method is to map the data into a high dimensional space via nonlinear mapping and do a linear regression in this space. Here we use a Haar wavelet-like kernel to achieve the task. This strategy, in contrast to Support Vector Machines technique, shows the conceptual simplicity of least mean square algoritm for linear regression but allows local nonlinear aproximation of the system evolution, with low computational cost.
doi_str_mv 10.1140/epjst/e2007-00099-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30025511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30025511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-5a19c011fb770794572afabffba7bca4d7bd079beca261bbb7caf2991e5a838b3</originalsourceid><addsrcrecordid>eNo1kMFOwzAQRC0EEqXwBVxy4ha668R1fUQVUKRKXOBsrR0bpUrikE0l-veEtpxmNHqawxPiHuERsYRF6Hc8LoIE0DkAGJOrCzFDozBfloCX_71Q6lrcMO8A1FKaYibKDdGQOeKaM-qqrEtdU3dh2tpUhal-ZSlmPrV9E34yPvAYWr4VV5EaDnfnnIvPl-eP9Sbfvr--rZ-2uZcrGHNFaDwgRqc1aFMqLSmSi9GRdp7KSrtq2l3wJJfonNOeojQGg6JVsXLFXDycfvshfe8Dj7at2YemoS6kPdsCQCqFOIHFCfRDYh5CtP1QtzQcLIL9M2SPhuzRkD0asqr4BXkmW_c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30025511</pqid></control><display><type>article</type><title>Haar basis and nonlinear modeling of complex systems</title><source>SpringerLink</source><creator>García, P. ; Merlitti, A.</creator><creatorcontrib>García, P. ; Merlitti, A.</creatorcontrib><description>In this work we introduce a technique to perform nonlinear modeling of chaotic time series using the kernel method. The basic idea behind this method is to map the data into a high dimensional space via nonlinear mapping and do a linear regression in this space. Here we use a Haar wavelet-like kernel to achieve the task. This strategy, in contrast to Support Vector Machines technique, shows the conceptual simplicity of least mean square algoritm for linear regression but allows local nonlinear aproximation of the system evolution, with low computational cost.</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjst/e2007-00099-5</identifier><language>eng</language><ispartof>The European physical journal. ST, Special topics, 2007-04, Vol.143 (1), p.261-264</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-5a19c011fb770794572afabffba7bca4d7bd079beca261bbb7caf2991e5a838b3</citedby><cites>FETCH-LOGICAL-c280t-5a19c011fb770794572afabffba7bca4d7bd079beca261bbb7caf2991e5a838b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>García, P.</creatorcontrib><creatorcontrib>Merlitti, A.</creatorcontrib><title>Haar basis and nonlinear modeling of complex systems</title><title>The European physical journal. ST, Special topics</title><description>In this work we introduce a technique to perform nonlinear modeling of chaotic time series using the kernel method. The basic idea behind this method is to map the data into a high dimensional space via nonlinear mapping and do a linear regression in this space. Here we use a Haar wavelet-like kernel to achieve the task. This strategy, in contrast to Support Vector Machines technique, shows the conceptual simplicity of least mean square algoritm for linear regression but allows local nonlinear aproximation of the system evolution, with low computational cost.</description><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNo1kMFOwzAQRC0EEqXwBVxy4ha668R1fUQVUKRKXOBsrR0bpUrikE0l-veEtpxmNHqawxPiHuERsYRF6Hc8LoIE0DkAGJOrCzFDozBfloCX_71Q6lrcMO8A1FKaYibKDdGQOeKaM-qqrEtdU3dh2tpUhal-ZSlmPrV9E34yPvAYWr4VV5EaDnfnnIvPl-eP9Sbfvr--rZ-2uZcrGHNFaDwgRqc1aFMqLSmSi9GRdp7KSrtq2l3wJJfonNOeojQGg6JVsXLFXDycfvshfe8Dj7at2YemoS6kPdsCQCqFOIHFCfRDYh5CtP1QtzQcLIL9M2SPhuzRkD0asqr4BXkmW_c</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>García, P.</creator><creator>Merlitti, A.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200704</creationdate><title>Haar basis and nonlinear modeling of complex systems</title><author>García, P. ; Merlitti, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-5a19c011fb770794572afabffba7bca4d7bd079beca261bbb7caf2991e5a838b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García, P.</creatorcontrib><creatorcontrib>Merlitti, A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García, P.</au><au>Merlitti, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Haar basis and nonlinear modeling of complex systems</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><date>2007-04</date><risdate>2007</risdate><volume>143</volume><issue>1</issue><spage>261</spage><epage>264</epage><pages>261-264</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>In this work we introduce a technique to perform nonlinear modeling of chaotic time series using the kernel method. The basic idea behind this method is to map the data into a high dimensional space via nonlinear mapping and do a linear regression in this space. Here we use a Haar wavelet-like kernel to achieve the task. This strategy, in contrast to Support Vector Machines technique, shows the conceptual simplicity of least mean square algoritm for linear regression but allows local nonlinear aproximation of the system evolution, with low computational cost.</abstract><doi>10.1140/epjst/e2007-00099-5</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1951-6355
ispartof The European physical journal. ST, Special topics, 2007-04, Vol.143 (1), p.261-264
issn 1951-6355
1951-6401
language eng
recordid cdi_proquest_miscellaneous_30025511
source SpringerLink
title Haar basis and nonlinear modeling of complex systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A58%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Haar%20basis%20and%20nonlinear%20modeling%20of%20complex%20systems&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Garc%C3%ADa,%20P.&rft.date=2007-04&rft.volume=143&rft.issue=1&rft.spage=261&rft.epage=264&rft.pages=261-264&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjst/e2007-00099-5&rft_dat=%3Cproquest_cross%3E30025511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30025511&rft_id=info:pmid/&rfr_iscdi=true