Synthesis and thermal decomposition of GAP–Poly(BAMO) copolymer

An energetic copolymer of glycidyl azide polymer (GAP) and poly(bis(azidomethyl)oxetane (Poly(BAMO)) was synthesized using the Borontrifluoride–dimethyl ether complex/diol initiator system. The synthesized copolymer exhibited the characteristics of an energetic thermoplastic elastomer (ETPE). Thermo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer degradation and stability 2007-07, Vol.92 (7), p.1365-1377
Hauptverfasser: Pisharath, Sreekumar, Ang, How Ghee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1377
container_issue 7
container_start_page 1365
container_title Polymer degradation and stability
container_volume 92
creator Pisharath, Sreekumar
Ang, How Ghee
description An energetic copolymer of glycidyl azide polymer (GAP) and poly(bis(azidomethyl)oxetane (Poly(BAMO)) was synthesized using the Borontrifluoride–dimethyl ether complex/diol initiator system. The synthesized copolymer exhibited the characteristics of an energetic thermoplastic elastomer (ETPE). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to study the thermal decomposition behavior and the results were compared with that of the constituent homopolymers. The main weight loss step in all the polymers coincides with the exothermic dissociation of the azido groups in the side chain. In contrast with the behavior of the homopolymers, the copolymer shows a broad exothermic shoulder peak at 298 °C after the main exothermic decomposition peak at 228 °C. Kinetic analysis was performed by Vyazovkin's model-free method, which suggests that the activation energy of the main decomposition step is around 145 kJ/mol and for the second shoulder it is around 220 kJ/mol. Fourier transform infra red (FTIR) spectra of the degradation residues show that the azido groups in the copolymer decompose in two stages at different temperatures which is responsible for the double decomposition behavior.
doi_str_mv 10.1016/j.polymdegradstab.2007.03.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30011548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141391007000900</els_id><sourcerecordid>30011548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-1866cf19b83b98700ed3b9a7454f3378efd69ca46423677953af3fdb51ae72b93</originalsourceid><addsrcrecordid>eNqNkM9KAzEQxoMoWKvvsJeKHnZNNvv34GEtWgWlBfUcsslEU3Y3a7IVevMdfEOfxNQWBE_OZQa-b-bHfAhNCI4IJtnFMupNs24lvFgu3cDrKMY4jzCNvLqHRqTIaRjTmOyjESYJCWlJ8CE6cm6JfSUpGaHqcd0Nr-C0C3gnAz_aljeBBGHa3jg9aNMFRgWzavH18bnwvLOr6mF-HgjzAwd7jA4Ubxyc7PoYPd9cP01vw_v57G5a3YeClskQkiLLhCJlXdC6LHKMQfqB50maKErzApTMSsGTLIlpludlSrmiStYp4ZDHdUnH6HR7t7fmbQVuYK12ApqGd2BWjlGMCUmTwhsvt0ZhjXMWFOutbrldM4LZJji2ZH-CY5vgGKbMq35_sgNxJ3ijLO-Edr9HihLHHuZ9s60P_NfvGixzQkMnQGoLYmDS6H8SvwGx9Y2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30011548</pqid></control><display><type>article</type><title>Synthesis and thermal decomposition of GAP–Poly(BAMO) copolymer</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Pisharath, Sreekumar ; Ang, How Ghee</creator><creatorcontrib>Pisharath, Sreekumar ; Ang, How Ghee</creatorcontrib><description>An energetic copolymer of glycidyl azide polymer (GAP) and poly(bis(azidomethyl)oxetane (Poly(BAMO)) was synthesized using the Borontrifluoride–dimethyl ether complex/diol initiator system. The synthesized copolymer exhibited the characteristics of an energetic thermoplastic elastomer (ETPE). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to study the thermal decomposition behavior and the results were compared with that of the constituent homopolymers. The main weight loss step in all the polymers coincides with the exothermic dissociation of the azido groups in the side chain. In contrast with the behavior of the homopolymers, the copolymer shows a broad exothermic shoulder peak at 298 °C after the main exothermic decomposition peak at 228 °C. Kinetic analysis was performed by Vyazovkin's model-free method, which suggests that the activation energy of the main decomposition step is around 145 kJ/mol and for the second shoulder it is around 220 kJ/mol. Fourier transform infra red (FTIR) spectra of the degradation residues show that the azido groups in the copolymer decompose in two stages at different temperatures which is responsible for the double decomposition behavior.</description><identifier>ISSN: 0141-3910</identifier><identifier>EISSN: 1873-2321</identifier><identifier>DOI: 10.1016/j.polymdegradstab.2007.03.016</identifier><identifier>CODEN: PDSTDW</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Energetic polymer ; Exact sciences and technology ; Model-free kinetics ; Organic polymers ; Physicochemistry of polymers ; Polymers with particular properties ; Preparation, kinetics, thermodynamics, mechanism and catalysts ; Thermal decomposition ; Thermoplastic elastomer</subject><ispartof>Polymer degradation and stability, 2007-07, Vol.92 (7), p.1365-1377</ispartof><rights>2007 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-1866cf19b83b98700ed3b9a7454f3378efd69ca46423677953af3fdb51ae72b93</citedby><cites>FETCH-LOGICAL-c394t-1866cf19b83b98700ed3b9a7454f3378efd69ca46423677953af3fdb51ae72b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymdegradstab.2007.03.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18902300$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pisharath, Sreekumar</creatorcontrib><creatorcontrib>Ang, How Ghee</creatorcontrib><title>Synthesis and thermal decomposition of GAP–Poly(BAMO) copolymer</title><title>Polymer degradation and stability</title><description>An energetic copolymer of glycidyl azide polymer (GAP) and poly(bis(azidomethyl)oxetane (Poly(BAMO)) was synthesized using the Borontrifluoride–dimethyl ether complex/diol initiator system. The synthesized copolymer exhibited the characteristics of an energetic thermoplastic elastomer (ETPE). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to study the thermal decomposition behavior and the results were compared with that of the constituent homopolymers. The main weight loss step in all the polymers coincides with the exothermic dissociation of the azido groups in the side chain. In contrast with the behavior of the homopolymers, the copolymer shows a broad exothermic shoulder peak at 298 °C after the main exothermic decomposition peak at 228 °C. Kinetic analysis was performed by Vyazovkin's model-free method, which suggests that the activation energy of the main decomposition step is around 145 kJ/mol and for the second shoulder it is around 220 kJ/mol. Fourier transform infra red (FTIR) spectra of the degradation residues show that the azido groups in the copolymer decompose in two stages at different temperatures which is responsible for the double decomposition behavior.</description><subject>Applied sciences</subject><subject>Energetic polymer</subject><subject>Exact sciences and technology</subject><subject>Model-free kinetics</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polymers with particular properties</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><subject>Thermal decomposition</subject><subject>Thermoplastic elastomer</subject><issn>0141-3910</issn><issn>1873-2321</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkM9KAzEQxoMoWKvvsJeKHnZNNvv34GEtWgWlBfUcsslEU3Y3a7IVevMdfEOfxNQWBE_OZQa-b-bHfAhNCI4IJtnFMupNs24lvFgu3cDrKMY4jzCNvLqHRqTIaRjTmOyjESYJCWlJ8CE6cm6JfSUpGaHqcd0Nr-C0C3gnAz_aljeBBGHa3jg9aNMFRgWzavH18bnwvLOr6mF-HgjzAwd7jA4Ubxyc7PoYPd9cP01vw_v57G5a3YeClskQkiLLhCJlXdC6LHKMQfqB50maKErzApTMSsGTLIlpludlSrmiStYp4ZDHdUnH6HR7t7fmbQVuYK12ApqGd2BWjlGMCUmTwhsvt0ZhjXMWFOutbrldM4LZJji2ZH-CY5vgGKbMq35_sgNxJ3ijLO-Edr9HihLHHuZ9s60P_NfvGixzQkMnQGoLYmDS6H8SvwGx9Y2g</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Pisharath, Sreekumar</creator><creator>Ang, How Ghee</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20070701</creationdate><title>Synthesis and thermal decomposition of GAP–Poly(BAMO) copolymer</title><author>Pisharath, Sreekumar ; Ang, How Ghee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-1866cf19b83b98700ed3b9a7454f3378efd69ca46423677953af3fdb51ae72b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Energetic polymer</topic><topic>Exact sciences and technology</topic><topic>Model-free kinetics</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polymers with particular properties</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><topic>Thermal decomposition</topic><topic>Thermoplastic elastomer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pisharath, Sreekumar</creatorcontrib><creatorcontrib>Ang, How Ghee</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer degradation and stability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pisharath, Sreekumar</au><au>Ang, How Ghee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and thermal decomposition of GAP–Poly(BAMO) copolymer</atitle><jtitle>Polymer degradation and stability</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>92</volume><issue>7</issue><spage>1365</spage><epage>1377</epage><pages>1365-1377</pages><issn>0141-3910</issn><eissn>1873-2321</eissn><coden>PDSTDW</coden><abstract>An energetic copolymer of glycidyl azide polymer (GAP) and poly(bis(azidomethyl)oxetane (Poly(BAMO)) was synthesized using the Borontrifluoride–dimethyl ether complex/diol initiator system. The synthesized copolymer exhibited the characteristics of an energetic thermoplastic elastomer (ETPE). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to study the thermal decomposition behavior and the results were compared with that of the constituent homopolymers. The main weight loss step in all the polymers coincides with the exothermic dissociation of the azido groups in the side chain. In contrast with the behavior of the homopolymers, the copolymer shows a broad exothermic shoulder peak at 298 °C after the main exothermic decomposition peak at 228 °C. Kinetic analysis was performed by Vyazovkin's model-free method, which suggests that the activation energy of the main decomposition step is around 145 kJ/mol and for the second shoulder it is around 220 kJ/mol. Fourier transform infra red (FTIR) spectra of the degradation residues show that the azido groups in the copolymer decompose in two stages at different temperatures which is responsible for the double decomposition behavior.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymdegradstab.2007.03.016</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-3910
ispartof Polymer degradation and stability, 2007-07, Vol.92 (7), p.1365-1377
issn 0141-3910
1873-2321
language eng
recordid cdi_proquest_miscellaneous_30011548
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Energetic polymer
Exact sciences and technology
Model-free kinetics
Organic polymers
Physicochemistry of polymers
Polymers with particular properties
Preparation, kinetics, thermodynamics, mechanism and catalysts
Thermal decomposition
Thermoplastic elastomer
title Synthesis and thermal decomposition of GAP–Poly(BAMO) copolymer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T08%3A19%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20thermal%20decomposition%20of%20GAP%E2%80%93Poly(BAMO)%20copolymer&rft.jtitle=Polymer%20degradation%20and%20stability&rft.au=Pisharath,%20Sreekumar&rft.date=2007-07-01&rft.volume=92&rft.issue=7&rft.spage=1365&rft.epage=1377&rft.pages=1365-1377&rft.issn=0141-3910&rft.eissn=1873-2321&rft.coden=PDSTDW&rft_id=info:doi/10.1016/j.polymdegradstab.2007.03.016&rft_dat=%3Cproquest_cross%3E30011548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30011548&rft_id=info:pmid/&rft_els_id=S0141391007000900&rfr_iscdi=true