Synthesis and thermal decomposition of GAP–Poly(BAMO) copolymer
An energetic copolymer of glycidyl azide polymer (GAP) and poly(bis(azidomethyl)oxetane (Poly(BAMO)) was synthesized using the Borontrifluoride–dimethyl ether complex/diol initiator system. The synthesized copolymer exhibited the characteristics of an energetic thermoplastic elastomer (ETPE). Thermo...
Gespeichert in:
Veröffentlicht in: | Polymer degradation and stability 2007-07, Vol.92 (7), p.1365-1377 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1377 |
---|---|
container_issue | 7 |
container_start_page | 1365 |
container_title | Polymer degradation and stability |
container_volume | 92 |
creator | Pisharath, Sreekumar Ang, How Ghee |
description | An energetic copolymer of glycidyl azide polymer (GAP) and poly(bis(azidomethyl)oxetane (Poly(BAMO)) was synthesized using the Borontrifluoride–dimethyl ether complex/diol initiator system. The synthesized copolymer exhibited the characteristics of an energetic thermoplastic elastomer (ETPE). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to study the thermal decomposition behavior and the results were compared with that of the constituent homopolymers. The main weight loss step in all the polymers coincides with the exothermic dissociation of the azido groups in the side chain. In contrast with the behavior of the homopolymers, the copolymer shows a broad exothermic shoulder peak at 298
°C after the main exothermic decomposition peak at 228
°C. Kinetic analysis was performed by Vyazovkin's model-free method, which suggests that the activation energy of the main decomposition step is around 145
kJ/mol and for the second shoulder it is around 220
kJ/mol. Fourier transform infra red (FTIR) spectra of the degradation residues show that the azido groups in the copolymer decompose in two stages at different temperatures which is responsible for the double decomposition behavior. |
doi_str_mv | 10.1016/j.polymdegradstab.2007.03.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30011548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141391007000900</els_id><sourcerecordid>30011548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-1866cf19b83b98700ed3b9a7454f3378efd69ca46423677953af3fdb51ae72b93</originalsourceid><addsrcrecordid>eNqNkM9KAzEQxoMoWKvvsJeKHnZNNvv34GEtWgWlBfUcsslEU3Y3a7IVevMdfEOfxNQWBE_OZQa-b-bHfAhNCI4IJtnFMupNs24lvFgu3cDrKMY4jzCNvLqHRqTIaRjTmOyjESYJCWlJ8CE6cm6JfSUpGaHqcd0Nr-C0C3gnAz_aljeBBGHa3jg9aNMFRgWzavH18bnwvLOr6mF-HgjzAwd7jA4Ubxyc7PoYPd9cP01vw_v57G5a3YeClskQkiLLhCJlXdC6LHKMQfqB50maKErzApTMSsGTLIlpludlSrmiStYp4ZDHdUnH6HR7t7fmbQVuYK12ApqGd2BWjlGMCUmTwhsvt0ZhjXMWFOutbrldM4LZJji2ZH-CY5vgGKbMq35_sgNxJ3ijLO-Edr9HihLHHuZ9s60P_NfvGixzQkMnQGoLYmDS6H8SvwGx9Y2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30011548</pqid></control><display><type>article</type><title>Synthesis and thermal decomposition of GAP–Poly(BAMO) copolymer</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Pisharath, Sreekumar ; Ang, How Ghee</creator><creatorcontrib>Pisharath, Sreekumar ; Ang, How Ghee</creatorcontrib><description>An energetic copolymer of glycidyl azide polymer (GAP) and poly(bis(azidomethyl)oxetane (Poly(BAMO)) was synthesized using the Borontrifluoride–dimethyl ether complex/diol initiator system. The synthesized copolymer exhibited the characteristics of an energetic thermoplastic elastomer (ETPE). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to study the thermal decomposition behavior and the results were compared with that of the constituent homopolymers. The main weight loss step in all the polymers coincides with the exothermic dissociation of the azido groups in the side chain. In contrast with the behavior of the homopolymers, the copolymer shows a broad exothermic shoulder peak at 298
°C after the main exothermic decomposition peak at 228
°C. Kinetic analysis was performed by Vyazovkin's model-free method, which suggests that the activation energy of the main decomposition step is around 145
kJ/mol and for the second shoulder it is around 220
kJ/mol. Fourier transform infra red (FTIR) spectra of the degradation residues show that the azido groups in the copolymer decompose in two stages at different temperatures which is responsible for the double decomposition behavior.</description><identifier>ISSN: 0141-3910</identifier><identifier>EISSN: 1873-2321</identifier><identifier>DOI: 10.1016/j.polymdegradstab.2007.03.016</identifier><identifier>CODEN: PDSTDW</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Energetic polymer ; Exact sciences and technology ; Model-free kinetics ; Organic polymers ; Physicochemistry of polymers ; Polymers with particular properties ; Preparation, kinetics, thermodynamics, mechanism and catalysts ; Thermal decomposition ; Thermoplastic elastomer</subject><ispartof>Polymer degradation and stability, 2007-07, Vol.92 (7), p.1365-1377</ispartof><rights>2007 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-1866cf19b83b98700ed3b9a7454f3378efd69ca46423677953af3fdb51ae72b93</citedby><cites>FETCH-LOGICAL-c394t-1866cf19b83b98700ed3b9a7454f3378efd69ca46423677953af3fdb51ae72b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymdegradstab.2007.03.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18902300$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pisharath, Sreekumar</creatorcontrib><creatorcontrib>Ang, How Ghee</creatorcontrib><title>Synthesis and thermal decomposition of GAP–Poly(BAMO) copolymer</title><title>Polymer degradation and stability</title><description>An energetic copolymer of glycidyl azide polymer (GAP) and poly(bis(azidomethyl)oxetane (Poly(BAMO)) was synthesized using the Borontrifluoride–dimethyl ether complex/diol initiator system. The synthesized copolymer exhibited the characteristics of an energetic thermoplastic elastomer (ETPE). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to study the thermal decomposition behavior and the results were compared with that of the constituent homopolymers. The main weight loss step in all the polymers coincides with the exothermic dissociation of the azido groups in the side chain. In contrast with the behavior of the homopolymers, the copolymer shows a broad exothermic shoulder peak at 298
°C after the main exothermic decomposition peak at 228
°C. Kinetic analysis was performed by Vyazovkin's model-free method, which suggests that the activation energy of the main decomposition step is around 145
kJ/mol and for the second shoulder it is around 220
kJ/mol. Fourier transform infra red (FTIR) spectra of the degradation residues show that the azido groups in the copolymer decompose in two stages at different temperatures which is responsible for the double decomposition behavior.</description><subject>Applied sciences</subject><subject>Energetic polymer</subject><subject>Exact sciences and technology</subject><subject>Model-free kinetics</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polymers with particular properties</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><subject>Thermal decomposition</subject><subject>Thermoplastic elastomer</subject><issn>0141-3910</issn><issn>1873-2321</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkM9KAzEQxoMoWKvvsJeKHnZNNvv34GEtWgWlBfUcsslEU3Y3a7IVevMdfEOfxNQWBE_OZQa-b-bHfAhNCI4IJtnFMupNs24lvFgu3cDrKMY4jzCNvLqHRqTIaRjTmOyjESYJCWlJ8CE6cm6JfSUpGaHqcd0Nr-C0C3gnAz_aljeBBGHa3jg9aNMFRgWzavH18bnwvLOr6mF-HgjzAwd7jA4Ubxyc7PoYPd9cP01vw_v57G5a3YeClskQkiLLhCJlXdC6LHKMQfqB50maKErzApTMSsGTLIlpludlSrmiStYp4ZDHdUnH6HR7t7fmbQVuYK12ApqGd2BWjlGMCUmTwhsvt0ZhjXMWFOutbrldM4LZJji2ZH-CY5vgGKbMq35_sgNxJ3ijLO-Edr9HihLHHuZ9s60P_NfvGixzQkMnQGoLYmDS6H8SvwGx9Y2g</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Pisharath, Sreekumar</creator><creator>Ang, How Ghee</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20070701</creationdate><title>Synthesis and thermal decomposition of GAP–Poly(BAMO) copolymer</title><author>Pisharath, Sreekumar ; Ang, How Ghee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-1866cf19b83b98700ed3b9a7454f3378efd69ca46423677953af3fdb51ae72b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Energetic polymer</topic><topic>Exact sciences and technology</topic><topic>Model-free kinetics</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polymers with particular properties</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><topic>Thermal decomposition</topic><topic>Thermoplastic elastomer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pisharath, Sreekumar</creatorcontrib><creatorcontrib>Ang, How Ghee</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer degradation and stability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pisharath, Sreekumar</au><au>Ang, How Ghee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and thermal decomposition of GAP–Poly(BAMO) copolymer</atitle><jtitle>Polymer degradation and stability</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>92</volume><issue>7</issue><spage>1365</spage><epage>1377</epage><pages>1365-1377</pages><issn>0141-3910</issn><eissn>1873-2321</eissn><coden>PDSTDW</coden><abstract>An energetic copolymer of glycidyl azide polymer (GAP) and poly(bis(azidomethyl)oxetane (Poly(BAMO)) was synthesized using the Borontrifluoride–dimethyl ether complex/diol initiator system. The synthesized copolymer exhibited the characteristics of an energetic thermoplastic elastomer (ETPE). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to study the thermal decomposition behavior and the results were compared with that of the constituent homopolymers. The main weight loss step in all the polymers coincides with the exothermic dissociation of the azido groups in the side chain. In contrast with the behavior of the homopolymers, the copolymer shows a broad exothermic shoulder peak at 298
°C after the main exothermic decomposition peak at 228
°C. Kinetic analysis was performed by Vyazovkin's model-free method, which suggests that the activation energy of the main decomposition step is around 145
kJ/mol and for the second shoulder it is around 220
kJ/mol. Fourier transform infra red (FTIR) spectra of the degradation residues show that the azido groups in the copolymer decompose in two stages at different temperatures which is responsible for the double decomposition behavior.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymdegradstab.2007.03.016</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-3910 |
ispartof | Polymer degradation and stability, 2007-07, Vol.92 (7), p.1365-1377 |
issn | 0141-3910 1873-2321 |
language | eng |
recordid | cdi_proquest_miscellaneous_30011548 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Energetic polymer Exact sciences and technology Model-free kinetics Organic polymers Physicochemistry of polymers Polymers with particular properties Preparation, kinetics, thermodynamics, mechanism and catalysts Thermal decomposition Thermoplastic elastomer |
title | Synthesis and thermal decomposition of GAP–Poly(BAMO) copolymer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T08%3A19%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20thermal%20decomposition%20of%20GAP%E2%80%93Poly(BAMO)%20copolymer&rft.jtitle=Polymer%20degradation%20and%20stability&rft.au=Pisharath,%20Sreekumar&rft.date=2007-07-01&rft.volume=92&rft.issue=7&rft.spage=1365&rft.epage=1377&rft.pages=1365-1377&rft.issn=0141-3910&rft.eissn=1873-2321&rft.coden=PDSTDW&rft_id=info:doi/10.1016/j.polymdegradstab.2007.03.016&rft_dat=%3Cproquest_cross%3E30011548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30011548&rft_id=info:pmid/&rft_els_id=S0141391007000900&rfr_iscdi=true |