Characteristics of biological tissue equivalent phantoms applied to UWB communications
Previously, the authors studied biological tissue equivalent phantoms able to simulate the electrical constants of the human body in the 3‐ to 6‐GHz band in a single composition ratio. Therefore, in this paper, we examined how to study the antenna characteristics using the phantom when extended to a...
Gespeichert in:
Veröffentlicht in: | Electronics & communications in Japan. Part 1, Communications Communications, 2007-05, Vol.90 (5), p.48-55 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55 |
---|---|
container_issue | 5 |
container_start_page | 48 |
container_title | Electronics & communications in Japan. Part 1, Communications |
container_volume | 90 |
creator | Takimoto, Takuya Onishi, Teruo Saito, Kazuyuki Takahashi, Masaharu Uebayashi, Shinji Ito, Koichi |
description | Previously, the authors studied biological tissue equivalent phantoms able to simulate the electrical constants of the human body in the 3‐ to 6‐GHz band in a single composition ratio. Therefore, in this paper, we examined how to study the antenna characteristics using the phantom when extended to a bandwidth including 900 MHz to 3 GHz and 6 to 10 GHz and performed a quantitative study focusing on the electrical constants of the phantom. The result clearly showed hardly any effect of divergence of the phantom's electrical constants from the target values on the antenna input impedance, radiation efficiency, and radiation directivity. Therefore, in the entire ultra‐wideband (UWB), this phantom can be accurately evaluated through antenna characteristic measurements and is clearly effective. Furthermore, differences due to the divergence of the phantom's electrical constants from the target values in the entire UWB bandwidth (3 to 10 GHz) are within ±3% for the average local specific absorption rate (SAR) inside the phantom caused by the electromagnetic wave energy radiated from the antenna. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 1, 90(5): 48–55, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecja.20300 |
doi_str_mv | 10.1002/ecja.20300 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30009443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30009443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4080-3a1600eff107b69fe2fc18ff45e40f9b01a2dfdc80fc4eb416a22a50aad293fc3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4Qu8YoEUGDuO2y4h4lWVhxDQpTV1x2BI4hAnPP6elgJLVrM550pzGNsVcCAA5CHZZzyQkAKssZ7IJCRaSbXOesNBphOtpdhkWzE-A8BIZ6LHHvInbNC21PjYeht5cHzmQxEevcWCtz7Gjji9dv4NC6paXj9h1YYycqzrwtOct4HfT4-5DWXZVQup9aGK22zDYRFp5-f22f3pyV1-nkyuzy7yo0liFQwhSVFoAHJOwGCmR46ks2LonMpIgRvNQKCcu7kdgrOKZkpolBIzQJzLUeps2md7q926Ca8dxdaUPloqCqwodNGky0eVShfg_gq0TYixIWfqxpfYfBoBZpnOLNOZ73QLWKzgd1_Q5z-kOcnHR79OsnIWHenjz8HmxehBOsjM9OrMjMcyf7ic3pqb9As6KII3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30009443</pqid></control><display><type>article</type><title>Characteristics of biological tissue equivalent phantoms applied to UWB communications</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Takimoto, Takuya ; Onishi, Teruo ; Saito, Kazuyuki ; Takahashi, Masaharu ; Uebayashi, Shinji ; Ito, Koichi</creator><creatorcontrib>Takimoto, Takuya ; Onishi, Teruo ; Saito, Kazuyuki ; Takahashi, Masaharu ; Uebayashi, Shinji ; Ito, Koichi</creatorcontrib><description>Previously, the authors studied biological tissue equivalent phantoms able to simulate the electrical constants of the human body in the 3‐ to 6‐GHz band in a single composition ratio. Therefore, in this paper, we examined how to study the antenna characteristics using the phantom when extended to a bandwidth including 900 MHz to 3 GHz and 6 to 10 GHz and performed a quantitative study focusing on the electrical constants of the phantom. The result clearly showed hardly any effect of divergence of the phantom's electrical constants from the target values on the antenna input impedance, radiation efficiency, and radiation directivity. Therefore, in the entire ultra‐wideband (UWB), this phantom can be accurately evaluated through antenna characteristic measurements and is clearly effective. Furthermore, differences due to the divergence of the phantom's electrical constants from the target values in the entire UWB bandwidth (3 to 10 GHz) are within ±3% for the average local specific absorption rate (SAR) inside the phantom caused by the electromagnetic wave energy radiated from the antenna. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 1, 90(5): 48–55, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecja.20300</description><identifier>ISSN: 8756-6621</identifier><identifier>EISSN: 1520-6424</identifier><identifier>DOI: 10.1002/ecja.20300</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>broadband ; FD-TD method ; local SAR ; tissue equivalent phantom ; UWB</subject><ispartof>Electronics & communications in Japan. Part 1, Communications, 2007-05, Vol.90 (5), p.48-55</ispartof><rights>Copyright © 2007 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4080-3a1600eff107b69fe2fc18ff45e40f9b01a2dfdc80fc4eb416a22a50aad293fc3</citedby><cites>FETCH-LOGICAL-c4080-3a1600eff107b69fe2fc18ff45e40f9b01a2dfdc80fc4eb416a22a50aad293fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fecja.20300$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fecja.20300$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Takimoto, Takuya</creatorcontrib><creatorcontrib>Onishi, Teruo</creatorcontrib><creatorcontrib>Saito, Kazuyuki</creatorcontrib><creatorcontrib>Takahashi, Masaharu</creatorcontrib><creatorcontrib>Uebayashi, Shinji</creatorcontrib><creatorcontrib>Ito, Koichi</creatorcontrib><title>Characteristics of biological tissue equivalent phantoms applied to UWB communications</title><title>Electronics & communications in Japan. Part 1, Communications</title><addtitle>Electron. Comm. Jpn. Pt. I</addtitle><description>Previously, the authors studied biological tissue equivalent phantoms able to simulate the electrical constants of the human body in the 3‐ to 6‐GHz band in a single composition ratio. Therefore, in this paper, we examined how to study the antenna characteristics using the phantom when extended to a bandwidth including 900 MHz to 3 GHz and 6 to 10 GHz and performed a quantitative study focusing on the electrical constants of the phantom. The result clearly showed hardly any effect of divergence of the phantom's electrical constants from the target values on the antenna input impedance, radiation efficiency, and radiation directivity. Therefore, in the entire ultra‐wideband (UWB), this phantom can be accurately evaluated through antenna characteristic measurements and is clearly effective. Furthermore, differences due to the divergence of the phantom's electrical constants from the target values in the entire UWB bandwidth (3 to 10 GHz) are within ±3% for the average local specific absorption rate (SAR) inside the phantom caused by the electromagnetic wave energy radiated from the antenna. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 1, 90(5): 48–55, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecja.20300</description><subject>broadband</subject><subject>FD-TD method</subject><subject>local SAR</subject><subject>tissue equivalent phantom</subject><subject>UWB</subject><issn>8756-6621</issn><issn>1520-6424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqWw4Qu8YoEUGDuO2y4h4lWVhxDQpTV1x2BI4hAnPP6elgJLVrM550pzGNsVcCAA5CHZZzyQkAKssZ7IJCRaSbXOesNBphOtpdhkWzE-A8BIZ6LHHvInbNC21PjYeht5cHzmQxEevcWCtz7Gjji9dv4NC6paXj9h1YYycqzrwtOct4HfT4-5DWXZVQup9aGK22zDYRFp5-f22f3pyV1-nkyuzy7yo0liFQwhSVFoAHJOwGCmR46ks2LonMpIgRvNQKCcu7kdgrOKZkpolBIzQJzLUeps2md7q926Ca8dxdaUPloqCqwodNGky0eVShfg_gq0TYixIWfqxpfYfBoBZpnOLNOZ73QLWKzgd1_Q5z-kOcnHR79OsnIWHenjz8HmxehBOsjM9OrMjMcyf7ic3pqb9As6KII3</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Takimoto, Takuya</creator><creator>Onishi, Teruo</creator><creator>Saito, Kazuyuki</creator><creator>Takahashi, Masaharu</creator><creator>Uebayashi, Shinji</creator><creator>Ito, Koichi</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200705</creationdate><title>Characteristics of biological tissue equivalent phantoms applied to UWB communications</title><author>Takimoto, Takuya ; Onishi, Teruo ; Saito, Kazuyuki ; Takahashi, Masaharu ; Uebayashi, Shinji ; Ito, Koichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4080-3a1600eff107b69fe2fc18ff45e40f9b01a2dfdc80fc4eb416a22a50aad293fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>broadband</topic><topic>FD-TD method</topic><topic>local SAR</topic><topic>tissue equivalent phantom</topic><topic>UWB</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takimoto, Takuya</creatorcontrib><creatorcontrib>Onishi, Teruo</creatorcontrib><creatorcontrib>Saito, Kazuyuki</creatorcontrib><creatorcontrib>Takahashi, Masaharu</creatorcontrib><creatorcontrib>Uebayashi, Shinji</creatorcontrib><creatorcontrib>Ito, Koichi</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electronics & communications in Japan. Part 1, Communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takimoto, Takuya</au><au>Onishi, Teruo</au><au>Saito, Kazuyuki</au><au>Takahashi, Masaharu</au><au>Uebayashi, Shinji</au><au>Ito, Koichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristics of biological tissue equivalent phantoms applied to UWB communications</atitle><jtitle>Electronics & communications in Japan. Part 1, Communications</jtitle><addtitle>Electron. Comm. Jpn. Pt. I</addtitle><date>2007-05</date><risdate>2007</risdate><volume>90</volume><issue>5</issue><spage>48</spage><epage>55</epage><pages>48-55</pages><issn>8756-6621</issn><eissn>1520-6424</eissn><abstract>Previously, the authors studied biological tissue equivalent phantoms able to simulate the electrical constants of the human body in the 3‐ to 6‐GHz band in a single composition ratio. Therefore, in this paper, we examined how to study the antenna characteristics using the phantom when extended to a bandwidth including 900 MHz to 3 GHz and 6 to 10 GHz and performed a quantitative study focusing on the electrical constants of the phantom. The result clearly showed hardly any effect of divergence of the phantom's electrical constants from the target values on the antenna input impedance, radiation efficiency, and radiation directivity. Therefore, in the entire ultra‐wideband (UWB), this phantom can be accurately evaluated through antenna characteristic measurements and is clearly effective. Furthermore, differences due to the divergence of the phantom's electrical constants from the target values in the entire UWB bandwidth (3 to 10 GHz) are within ±3% for the average local specific absorption rate (SAR) inside the phantom caused by the electromagnetic wave energy radiated from the antenna. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 1, 90(5): 48–55, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecja.20300</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/ecja.20300</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-6621 |
ispartof | Electronics & communications in Japan. Part 1, Communications, 2007-05, Vol.90 (5), p.48-55 |
issn | 8756-6621 1520-6424 |
language | eng |
recordid | cdi_proquest_miscellaneous_30009443 |
source | Wiley Online Library Journals Frontfile Complete; Business Source Complete |
subjects | broadband FD-TD method local SAR tissue equivalent phantom UWB |
title | Characteristics of biological tissue equivalent phantoms applied to UWB communications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A16%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristics%20of%20biological%20tissue%20equivalent%20phantoms%20applied%20to%20UWB%20communications&rft.jtitle=Electronics%20&%20communications%20in%20Japan.%20Part%201,%20Communications&rft.au=Takimoto,%20Takuya&rft.date=2007-05&rft.volume=90&rft.issue=5&rft.spage=48&rft.epage=55&rft.pages=48-55&rft.issn=8756-6621&rft.eissn=1520-6424&rft_id=info:doi/10.1002/ecja.20300&rft_dat=%3Cproquest_cross%3E30009443%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30009443&rft_id=info:pmid/&rfr_iscdi=true |