Predicting splat morphology in a thermal spray process

Splats formed during a thermal spray process may be either highly fragmented or intact and disk-like. To predict this change in splat morphology, a dimensionless solidification parameter ( Θ), which takes into account factors such as the particle diameter and velocity, substrate temperature, splat a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2007-06, Vol.201 (18), p.7789-7801
Hauptverfasser: Dhiman, Rajeev, McDonald, André G., Chandra, Sanjeev
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7801
container_issue 18
container_start_page 7789
container_title Surface & coatings technology
container_volume 201
creator Dhiman, Rajeev
McDonald, André G.
Chandra, Sanjeev
description Splats formed during a thermal spray process may be either highly fragmented or intact and disk-like. To predict this change in splat morphology, a dimensionless solidification parameter ( Θ), which takes into account factors such as the particle diameter and velocity, substrate temperature, splat and substrate thermophysical properties, and thermal contact resistance between the two, has been defined. Θ is the ratio of the thickness of the solid layer formed in the splat while it is spreading, to the splat thickness. The value of Θ can be calculated from simple analytical models of splat solidification and spreading. If solid layer growth is very slow ( Θ ≪ 1), the splat spreads out to a large extent. Once it reaches maximum spread, it becomes so thin that it ruptures, producing fragmented splats. If, however, the solid layer thickness is significant ( Θ ∼ 0.1–0.3), the splat is restricted from spreading too far and does not become thin enough to rupture, resulting in disk splats. When solid layer growth is rapid ( Θ > 0.3), it obstructs liquid from flowing outward during droplet impact, producing splats with fingers around their periphery. Predictions from the model are compared with experimental data and found to agree well.
doi_str_mv 10.1016/j.surfcoat.2007.03.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30008784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897207003258</els_id><sourcerecordid>30008784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-9a54522da1824b78c4ec6f525d5a4a93edd05d429077a64d3ac64976b039e663</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwCygb2CWM41e8A1W8pEqw6N6aOk7rKo9ip0j9e1y1iCWrWcy5czWHkFsKBQUqHzZF3IXGDjgWJYAqgBVA4YxMaKV0zhhX52QCpVB5pVV5Sa5i3AAAVZpPiPwMrvZ29P0qi9sWx6wbwnY9tMNqn_k-w2xcu9Bhm7YB99k2DNbFeE0uGmyjuznNKVm8PC9mb_n84_V99jTPLWd6zDUKLsqyRlqVfKkqy52VjShFLZCjZq6uQdS81KAUSl4ztJJrJZfAtJOSTcn98Wyq_dq5OJrOR-vaFns37KJh6Y9KVTyB8gjaMMQYXGO2wXcY9oaCOVgyG_NryRwsGWAmWUrBu1MDRottE7C3Pv6lq4pS0CJxj0fOpW-_vQsmWu96m-QFZ0dTD_6_qh_O0oCb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30008784</pqid></control><display><type>article</type><title>Predicting splat morphology in a thermal spray process</title><source>Elsevier ScienceDirect Journals</source><creator>Dhiman, Rajeev ; McDonald, André G. ; Chandra, Sanjeev</creator><creatorcontrib>Dhiman, Rajeev ; McDonald, André G. ; Chandra, Sanjeev</creatorcontrib><description>Splats formed during a thermal spray process may be either highly fragmented or intact and disk-like. To predict this change in splat morphology, a dimensionless solidification parameter ( Θ), which takes into account factors such as the particle diameter and velocity, substrate temperature, splat and substrate thermophysical properties, and thermal contact resistance between the two, has been defined. Θ is the ratio of the thickness of the solid layer formed in the splat while it is spreading, to the splat thickness. The value of Θ can be calculated from simple analytical models of splat solidification and spreading. If solid layer growth is very slow ( Θ ≪ 1), the splat spreads out to a large extent. Once it reaches maximum spread, it becomes so thin that it ruptures, producing fragmented splats. If, however, the solid layer thickness is significant ( Θ ∼ 0.1–0.3), the splat is restricted from spreading too far and does not become thin enough to rupture, resulting in disk splats. When solid layer growth is rapid ( Θ &gt; 0.3), it obstructs liquid from flowing outward during droplet impact, producing splats with fingers around their periphery. Predictions from the model are compared with experimental data and found to agree well.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2007.03.010</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Droplet impact ; Exact sciences and technology ; Materials science ; Metals. Metallurgy ; Physics ; Production techniques ; Solidification splashing ; Splat morphology ; Surface treatment ; Surface treatments ; Thermal spray</subject><ispartof>Surface &amp; coatings technology, 2007-06, Vol.201 (18), p.7789-7801</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-9a54522da1824b78c4ec6f525d5a4a93edd05d429077a64d3ac64976b039e663</citedby><cites>FETCH-LOGICAL-c439t-9a54522da1824b78c4ec6f525d5a4a93edd05d429077a64d3ac64976b039e663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0257897207003258$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18811095$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhiman, Rajeev</creatorcontrib><creatorcontrib>McDonald, André G.</creatorcontrib><creatorcontrib>Chandra, Sanjeev</creatorcontrib><title>Predicting splat morphology in a thermal spray process</title><title>Surface &amp; coatings technology</title><description>Splats formed during a thermal spray process may be either highly fragmented or intact and disk-like. To predict this change in splat morphology, a dimensionless solidification parameter ( Θ), which takes into account factors such as the particle diameter and velocity, substrate temperature, splat and substrate thermophysical properties, and thermal contact resistance between the two, has been defined. Θ is the ratio of the thickness of the solid layer formed in the splat while it is spreading, to the splat thickness. The value of Θ can be calculated from simple analytical models of splat solidification and spreading. If solid layer growth is very slow ( Θ ≪ 1), the splat spreads out to a large extent. Once it reaches maximum spread, it becomes so thin that it ruptures, producing fragmented splats. If, however, the solid layer thickness is significant ( Θ ∼ 0.1–0.3), the splat is restricted from spreading too far and does not become thin enough to rupture, resulting in disk splats. When solid layer growth is rapid ( Θ &gt; 0.3), it obstructs liquid from flowing outward during droplet impact, producing splats with fingers around their periphery. Predictions from the model are compared with experimental data and found to agree well.</description><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Droplet impact</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Solidification splashing</subject><subject>Splat morphology</subject><subject>Surface treatment</subject><subject>Surface treatments</subject><subject>Thermal spray</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwCygb2CWM41e8A1W8pEqw6N6aOk7rKo9ip0j9e1y1iCWrWcy5czWHkFsKBQUqHzZF3IXGDjgWJYAqgBVA4YxMaKV0zhhX52QCpVB5pVV5Sa5i3AAAVZpPiPwMrvZ29P0qi9sWx6wbwnY9tMNqn_k-w2xcu9Bhm7YB99k2DNbFeE0uGmyjuznNKVm8PC9mb_n84_V99jTPLWd6zDUKLsqyRlqVfKkqy52VjShFLZCjZq6uQdS81KAUSl4ztJJrJZfAtJOSTcn98Wyq_dq5OJrOR-vaFns37KJh6Y9KVTyB8gjaMMQYXGO2wXcY9oaCOVgyG_NryRwsGWAmWUrBu1MDRottE7C3Pv6lq4pS0CJxj0fOpW-_vQsmWu96m-QFZ0dTD_6_qh_O0oCb</recordid><startdate>20070625</startdate><enddate>20070625</enddate><creator>Dhiman, Rajeev</creator><creator>McDonald, André G.</creator><creator>Chandra, Sanjeev</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20070625</creationdate><title>Predicting splat morphology in a thermal spray process</title><author>Dhiman, Rajeev ; McDonald, André G. ; Chandra, Sanjeev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-9a54522da1824b78c4ec6f525d5a4a93edd05d429077a64d3ac64976b039e663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Droplet impact</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Solidification splashing</topic><topic>Splat morphology</topic><topic>Surface treatment</topic><topic>Surface treatments</topic><topic>Thermal spray</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhiman, Rajeev</creatorcontrib><creatorcontrib>McDonald, André G.</creatorcontrib><creatorcontrib>Chandra, Sanjeev</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhiman, Rajeev</au><au>McDonald, André G.</au><au>Chandra, Sanjeev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting splat morphology in a thermal spray process</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2007-06-25</date><risdate>2007</risdate><volume>201</volume><issue>18</issue><spage>7789</spage><epage>7801</epage><pages>7789-7801</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>Splats formed during a thermal spray process may be either highly fragmented or intact and disk-like. To predict this change in splat morphology, a dimensionless solidification parameter ( Θ), which takes into account factors such as the particle diameter and velocity, substrate temperature, splat and substrate thermophysical properties, and thermal contact resistance between the two, has been defined. Θ is the ratio of the thickness of the solid layer formed in the splat while it is spreading, to the splat thickness. The value of Θ can be calculated from simple analytical models of splat solidification and spreading. If solid layer growth is very slow ( Θ ≪ 1), the splat spreads out to a large extent. Once it reaches maximum spread, it becomes so thin that it ruptures, producing fragmented splats. If, however, the solid layer thickness is significant ( Θ ∼ 0.1–0.3), the splat is restricted from spreading too far and does not become thin enough to rupture, resulting in disk splats. When solid layer growth is rapid ( Θ &gt; 0.3), it obstructs liquid from flowing outward during droplet impact, producing splats with fingers around their periphery. Predictions from the model are compared with experimental data and found to agree well.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2007.03.010</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2007-06, Vol.201 (18), p.7789-7801
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_miscellaneous_30008784
source Elsevier ScienceDirect Journals
subjects Applied sciences
Cross-disciplinary physics: materials science
rheology
Droplet impact
Exact sciences and technology
Materials science
Metals. Metallurgy
Physics
Production techniques
Solidification splashing
Splat morphology
Surface treatment
Surface treatments
Thermal spray
title Predicting splat morphology in a thermal spray process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A10%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20splat%20morphology%20in%20a%20thermal%20spray%20process&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Dhiman,%20Rajeev&rft.date=2007-06-25&rft.volume=201&rft.issue=18&rft.spage=7789&rft.epage=7801&rft.pages=7789-7801&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2007.03.010&rft_dat=%3Cproquest_cross%3E30008784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30008784&rft_id=info:pmid/&rft_els_id=S0257897207003258&rfr_iscdi=true