Predicting splat morphology in a thermal spray process
Splats formed during a thermal spray process may be either highly fragmented or intact and disk-like. To predict this change in splat morphology, a dimensionless solidification parameter ( Θ), which takes into account factors such as the particle diameter and velocity, substrate temperature, splat a...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2007-06, Vol.201 (18), p.7789-7801 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7801 |
---|---|
container_issue | 18 |
container_start_page | 7789 |
container_title | Surface & coatings technology |
container_volume | 201 |
creator | Dhiman, Rajeev McDonald, André G. Chandra, Sanjeev |
description | Splats formed during a thermal spray process may be either highly fragmented or intact and disk-like. To predict this change in splat morphology, a dimensionless solidification parameter (
Θ), which takes into account factors such as the particle diameter and velocity, substrate temperature, splat and substrate thermophysical properties, and thermal contact resistance between the two, has been defined.
Θ is the ratio of the thickness of the solid layer formed in the splat while it is spreading, to the splat thickness. The value of
Θ can be calculated from simple analytical models of splat solidification and spreading. If solid layer growth is very slow (
Θ
≪
1), the splat spreads out to a large extent. Once it reaches maximum spread, it becomes so thin that it ruptures, producing fragmented splats. If, however, the solid layer thickness is significant (
Θ
∼
0.1–0.3), the splat is restricted from spreading too far and does not become thin enough to rupture, resulting in disk splats. When solid layer growth is rapid (
Θ
>
0.3), it obstructs liquid from flowing outward during droplet impact, producing splats with fingers around their periphery. Predictions from the model are compared with experimental data and found to agree well. |
doi_str_mv | 10.1016/j.surfcoat.2007.03.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30008784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897207003258</els_id><sourcerecordid>30008784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-9a54522da1824b78c4ec6f525d5a4a93edd05d429077a64d3ac64976b039e663</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwCygb2CWM41e8A1W8pEqw6N6aOk7rKo9ip0j9e1y1iCWrWcy5czWHkFsKBQUqHzZF3IXGDjgWJYAqgBVA4YxMaKV0zhhX52QCpVB5pVV5Sa5i3AAAVZpPiPwMrvZ29P0qi9sWx6wbwnY9tMNqn_k-w2xcu9Bhm7YB99k2DNbFeE0uGmyjuznNKVm8PC9mb_n84_V99jTPLWd6zDUKLsqyRlqVfKkqy52VjShFLZCjZq6uQdS81KAUSl4ztJJrJZfAtJOSTcn98Wyq_dq5OJrOR-vaFns37KJh6Y9KVTyB8gjaMMQYXGO2wXcY9oaCOVgyG_NryRwsGWAmWUrBu1MDRottE7C3Pv6lq4pS0CJxj0fOpW-_vQsmWu96m-QFZ0dTD_6_qh_O0oCb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30008784</pqid></control><display><type>article</type><title>Predicting splat morphology in a thermal spray process</title><source>Elsevier ScienceDirect Journals</source><creator>Dhiman, Rajeev ; McDonald, André G. ; Chandra, Sanjeev</creator><creatorcontrib>Dhiman, Rajeev ; McDonald, André G. ; Chandra, Sanjeev</creatorcontrib><description>Splats formed during a thermal spray process may be either highly fragmented or intact and disk-like. To predict this change in splat morphology, a dimensionless solidification parameter (
Θ), which takes into account factors such as the particle diameter and velocity, substrate temperature, splat and substrate thermophysical properties, and thermal contact resistance between the two, has been defined.
Θ is the ratio of the thickness of the solid layer formed in the splat while it is spreading, to the splat thickness. The value of
Θ can be calculated from simple analytical models of splat solidification and spreading. If solid layer growth is very slow (
Θ
≪
1), the splat spreads out to a large extent. Once it reaches maximum spread, it becomes so thin that it ruptures, producing fragmented splats. If, however, the solid layer thickness is significant (
Θ
∼
0.1–0.3), the splat is restricted from spreading too far and does not become thin enough to rupture, resulting in disk splats. When solid layer growth is rapid (
Θ
>
0.3), it obstructs liquid from flowing outward during droplet impact, producing splats with fingers around their periphery. Predictions from the model are compared with experimental data and found to agree well.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2007.03.010</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Droplet impact ; Exact sciences and technology ; Materials science ; Metals. Metallurgy ; Physics ; Production techniques ; Solidification splashing ; Splat morphology ; Surface treatment ; Surface treatments ; Thermal spray</subject><ispartof>Surface & coatings technology, 2007-06, Vol.201 (18), p.7789-7801</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-9a54522da1824b78c4ec6f525d5a4a93edd05d429077a64d3ac64976b039e663</citedby><cites>FETCH-LOGICAL-c439t-9a54522da1824b78c4ec6f525d5a4a93edd05d429077a64d3ac64976b039e663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0257897207003258$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18811095$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhiman, Rajeev</creatorcontrib><creatorcontrib>McDonald, André G.</creatorcontrib><creatorcontrib>Chandra, Sanjeev</creatorcontrib><title>Predicting splat morphology in a thermal spray process</title><title>Surface & coatings technology</title><description>Splats formed during a thermal spray process may be either highly fragmented or intact and disk-like. To predict this change in splat morphology, a dimensionless solidification parameter (
Θ), which takes into account factors such as the particle diameter and velocity, substrate temperature, splat and substrate thermophysical properties, and thermal contact resistance between the two, has been defined.
Θ is the ratio of the thickness of the solid layer formed in the splat while it is spreading, to the splat thickness. The value of
Θ can be calculated from simple analytical models of splat solidification and spreading. If solid layer growth is very slow (
Θ
≪
1), the splat spreads out to a large extent. Once it reaches maximum spread, it becomes so thin that it ruptures, producing fragmented splats. If, however, the solid layer thickness is significant (
Θ
∼
0.1–0.3), the splat is restricted from spreading too far and does not become thin enough to rupture, resulting in disk splats. When solid layer growth is rapid (
Θ
>
0.3), it obstructs liquid from flowing outward during droplet impact, producing splats with fingers around their periphery. Predictions from the model are compared with experimental data and found to agree well.</description><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Droplet impact</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Solidification splashing</subject><subject>Splat morphology</subject><subject>Surface treatment</subject><subject>Surface treatments</subject><subject>Thermal spray</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwCygb2CWM41e8A1W8pEqw6N6aOk7rKo9ip0j9e1y1iCWrWcy5czWHkFsKBQUqHzZF3IXGDjgWJYAqgBVA4YxMaKV0zhhX52QCpVB5pVV5Sa5i3AAAVZpPiPwMrvZ29P0qi9sWx6wbwnY9tMNqn_k-w2xcu9Bhm7YB99k2DNbFeE0uGmyjuznNKVm8PC9mb_n84_V99jTPLWd6zDUKLsqyRlqVfKkqy52VjShFLZCjZq6uQdS81KAUSl4ztJJrJZfAtJOSTcn98Wyq_dq5OJrOR-vaFns37KJh6Y9KVTyB8gjaMMQYXGO2wXcY9oaCOVgyG_NryRwsGWAmWUrBu1MDRottE7C3Pv6lq4pS0CJxj0fOpW-_vQsmWu96m-QFZ0dTD_6_qh_O0oCb</recordid><startdate>20070625</startdate><enddate>20070625</enddate><creator>Dhiman, Rajeev</creator><creator>McDonald, André G.</creator><creator>Chandra, Sanjeev</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20070625</creationdate><title>Predicting splat morphology in a thermal spray process</title><author>Dhiman, Rajeev ; McDonald, André G. ; Chandra, Sanjeev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-9a54522da1824b78c4ec6f525d5a4a93edd05d429077a64d3ac64976b039e663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Droplet impact</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Solidification splashing</topic><topic>Splat morphology</topic><topic>Surface treatment</topic><topic>Surface treatments</topic><topic>Thermal spray</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhiman, Rajeev</creatorcontrib><creatorcontrib>McDonald, André G.</creatorcontrib><creatorcontrib>Chandra, Sanjeev</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface & coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhiman, Rajeev</au><au>McDonald, André G.</au><au>Chandra, Sanjeev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting splat morphology in a thermal spray process</atitle><jtitle>Surface & coatings technology</jtitle><date>2007-06-25</date><risdate>2007</risdate><volume>201</volume><issue>18</issue><spage>7789</spage><epage>7801</epage><pages>7789-7801</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>Splats formed during a thermal spray process may be either highly fragmented or intact and disk-like. To predict this change in splat morphology, a dimensionless solidification parameter (
Θ), which takes into account factors such as the particle diameter and velocity, substrate temperature, splat and substrate thermophysical properties, and thermal contact resistance between the two, has been defined.
Θ is the ratio of the thickness of the solid layer formed in the splat while it is spreading, to the splat thickness. The value of
Θ can be calculated from simple analytical models of splat solidification and spreading. If solid layer growth is very slow (
Θ
≪
1), the splat spreads out to a large extent. Once it reaches maximum spread, it becomes so thin that it ruptures, producing fragmented splats. If, however, the solid layer thickness is significant (
Θ
∼
0.1–0.3), the splat is restricted from spreading too far and does not become thin enough to rupture, resulting in disk splats. When solid layer growth is rapid (
Θ
>
0.3), it obstructs liquid from flowing outward during droplet impact, producing splats with fingers around their periphery. Predictions from the model are compared with experimental data and found to agree well.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2007.03.010</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-8972 |
ispartof | Surface & coatings technology, 2007-06, Vol.201 (18), p.7789-7801 |
issn | 0257-8972 1879-3347 |
language | eng |
recordid | cdi_proquest_miscellaneous_30008784 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Cross-disciplinary physics: materials science rheology Droplet impact Exact sciences and technology Materials science Metals. Metallurgy Physics Production techniques Solidification splashing Splat morphology Surface treatment Surface treatments Thermal spray |
title | Predicting splat morphology in a thermal spray process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A10%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20splat%20morphology%20in%20a%20thermal%20spray%20process&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Dhiman,%20Rajeev&rft.date=2007-06-25&rft.volume=201&rft.issue=18&rft.spage=7789&rft.epage=7801&rft.pages=7789-7801&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2007.03.010&rft_dat=%3Cproquest_cross%3E30008784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30008784&rft_id=info:pmid/&rft_els_id=S0257897207003258&rfr_iscdi=true |