Stability and band gaps of InGaAs, BGaAs, and BInGaAs alloys: Density-functional supercell calculations

The influence of arrangement and content of substituents (B, In) in BGaAs, InGaAs, and BInGaAs alloys on the stabilities and band gaps is investigated using density‐functional supercell calculations. The stability of ternary alloys decreases from InGaAs over BGaAs to GaAsN. Typical substituent struc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica Status Solidi (b) 2007-06, Vol.244 (6), p.1957-1963
Hauptverfasser: Jenichen, Arndt, Engler, Cornelia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1963
container_issue 6
container_start_page 1957
container_title Physica Status Solidi (b)
container_volume 244
creator Jenichen, Arndt
Engler, Cornelia
description The influence of arrangement and content of substituents (B, In) in BGaAs, InGaAs, and BInGaAs alloys on the stabilities and band gaps is investigated using density‐functional supercell calculations. The stability of ternary alloys decreases from InGaAs over BGaAs to GaAsN. Typical substituent structures show the following stability order: isolated substituents – [110] chains – clusters – twisted [111] chains – (200/211) arrangements (most stable). This is valid for both the In‐ and B‐poor as well as the In‐ and B‐rich alloys. From the fact that grown InGaAs provides a different gap than the most stable arrangement one can conclude that other structures (isolated indium atoms or Inm As clusters) are formed during the growth. Simultaneous substitutions (BInGaAs) of larger (In) and smaller (B) atoms prefer arrangements in larger distances (220) for isovalent boron substitution and in In–B bonds for antisite boron substitution. The high degree boron antisite substitution induces partially occupied acceptor bands which lead to a strong reduction of the band gap in comparison to the isovalent substitution. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
doi_str_mv 10.1002/pssb.200642215
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30004686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30004686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3885-fcc86a11a9379127ea761b3f09de5e0330515aa4b7ebc4e4cbaea412ceca6bc3</originalsourceid><addsrcrecordid>eNqFkMtLxDAQxoMouD6unnPRk13zaJrUm-tjVxEVVhC8hGlMpRrb2mnR_e9tqag3LzMw8_2-ZD5C9jibcsbEUY2YTQVjSSwEV2tkwpXgkUwVXycTJjWLeKrFJtlCfGGMaS75hDwvW8iKULQrCuUTzYbyDDXSKqeX5RxO8JDOxjasZuOMQgjVCo_pmS-xZ6O8K11bVCUEil3tG-dDoA6C6wIMc9whGzkE9LvffZvcX5zfny6i69v55enJdeSkMSrKnTMJcA6p1CkX2oNOeCZzlj555ZmUTHEFEGfaZy72scvAQ8yF8w6SzMltcjDa1k313nls7VuBw2eg9FWHVvaHx4lJeuF0FLqmQmx8buumeINmZTmzQ5x2iNP-xNkD-9_OgP1heQOlK_CXMoYZFZtel466jyL41T-u9m65nP19IxrZAlv_-cNC82oTLbWyDzdze7XQwjyyhb2TX2CRlk8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30004686</pqid></control><display><type>article</type><title>Stability and band gaps of InGaAs, BGaAs, and BInGaAs alloys: Density-functional supercell calculations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jenichen, Arndt ; Engler, Cornelia</creator><creatorcontrib>Jenichen, Arndt ; Engler, Cornelia</creatorcontrib><description>The influence of arrangement and content of substituents (B, In) in BGaAs, InGaAs, and BInGaAs alloys on the stabilities and band gaps is investigated using density‐functional supercell calculations. The stability of ternary alloys decreases from InGaAs over BGaAs to GaAsN. Typical substituent structures show the following stability order: isolated substituents – [110] chains – clusters – twisted [111] chains – (200/211) arrangements (most stable). This is valid for both the In‐ and B‐poor as well as the In‐ and B‐rich alloys. From the fact that grown InGaAs provides a different gap than the most stable arrangement one can conclude that other structures (isolated indium atoms or Inm As clusters) are formed during the growth. Simultaneous substitutions (BInGaAs) of larger (In) and smaller (B) atoms prefer arrangements in larger distances (220) for isovalent boron substitution and in In–B bonds for antisite boron substitution. The high degree boron antisite substitution induces partially occupied acceptor bands which lead to a strong reduction of the band gap in comparison to the isovalent substitution. (© 2007 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.200642215</identifier><identifier>CODEN: PSSBBD</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>61.66.Dk ; 64.75.+g ; 71.20.Nr ; 81.05.Ea ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electron density of states and band structure of crystalline solids ; Electron states ; Exact sciences and technology ; Physics ; Semiconductor compounds</subject><ispartof>Physica Status Solidi (b), 2007-06, Vol.244 (6), p.1957-1963</ispartof><rights>Copyright © 2007 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3885-fcc86a11a9379127ea761b3f09de5e0330515aa4b7ebc4e4cbaea412ceca6bc3</citedby><cites>FETCH-LOGICAL-c3885-fcc86a11a9379127ea761b3f09de5e0330515aa4b7ebc4e4cbaea412ceca6bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssb.200642215$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.200642215$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18808548$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jenichen, Arndt</creatorcontrib><creatorcontrib>Engler, Cornelia</creatorcontrib><title>Stability and band gaps of InGaAs, BGaAs, and BInGaAs alloys: Density-functional supercell calculations</title><title>Physica Status Solidi (b)</title><addtitle>phys. stat. sol. (b)</addtitle><description>The influence of arrangement and content of substituents (B, In) in BGaAs, InGaAs, and BInGaAs alloys on the stabilities and band gaps is investigated using density‐functional supercell calculations. The stability of ternary alloys decreases from InGaAs over BGaAs to GaAsN. Typical substituent structures show the following stability order: isolated substituents – [110] chains – clusters – twisted [111] chains – (200/211) arrangements (most stable). This is valid for both the In‐ and B‐poor as well as the In‐ and B‐rich alloys. From the fact that grown InGaAs provides a different gap than the most stable arrangement one can conclude that other structures (isolated indium atoms or Inm As clusters) are formed during the growth. Simultaneous substitutions (BInGaAs) of larger (In) and smaller (B) atoms prefer arrangements in larger distances (220) for isovalent boron substitution and in In–B bonds for antisite boron substitution. The high degree boron antisite substitution induces partially occupied acceptor bands which lead to a strong reduction of the band gap in comparison to the isovalent substitution. (© 2007 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><subject>61.66.Dk</subject><subject>64.75.+g</subject><subject>71.20.Nr</subject><subject>81.05.Ea</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electron density of states and band structure of crystalline solids</subject><subject>Electron states</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><subject>Semiconductor compounds</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkMtLxDAQxoMouD6unnPRk13zaJrUm-tjVxEVVhC8hGlMpRrb2mnR_e9tqag3LzMw8_2-ZD5C9jibcsbEUY2YTQVjSSwEV2tkwpXgkUwVXycTJjWLeKrFJtlCfGGMaS75hDwvW8iKULQrCuUTzYbyDDXSKqeX5RxO8JDOxjasZuOMQgjVCo_pmS-xZ6O8K11bVCUEil3tG-dDoA6C6wIMc9whGzkE9LvffZvcX5zfny6i69v55enJdeSkMSrKnTMJcA6p1CkX2oNOeCZzlj555ZmUTHEFEGfaZy72scvAQ8yF8w6SzMltcjDa1k313nls7VuBw2eg9FWHVvaHx4lJeuF0FLqmQmx8buumeINmZTmzQ5x2iNP-xNkD-9_OgP1heQOlK_CXMoYZFZtel466jyL41T-u9m65nP19IxrZAlv_-cNC82oTLbWyDzdze7XQwjyyhb2TX2CRlk8</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Jenichen, Arndt</creator><creator>Engler, Cornelia</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200706</creationdate><title>Stability and band gaps of InGaAs, BGaAs, and BInGaAs alloys: Density-functional supercell calculations</title><author>Jenichen, Arndt ; Engler, Cornelia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3885-fcc86a11a9379127ea761b3f09de5e0330515aa4b7ebc4e4cbaea412ceca6bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>61.66.Dk</topic><topic>64.75.+g</topic><topic>71.20.Nr</topic><topic>81.05.Ea</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electron density of states and band structure of crystalline solids</topic><topic>Electron states</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><topic>Semiconductor compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jenichen, Arndt</creatorcontrib><creatorcontrib>Engler, Cornelia</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica Status Solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jenichen, Arndt</au><au>Engler, Cornelia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and band gaps of InGaAs, BGaAs, and BInGaAs alloys: Density-functional supercell calculations</atitle><jtitle>Physica Status Solidi (b)</jtitle><addtitle>phys. stat. sol. (b)</addtitle><date>2007-06</date><risdate>2007</risdate><volume>244</volume><issue>6</issue><spage>1957</spage><epage>1963</epage><pages>1957-1963</pages><issn>0370-1972</issn><eissn>1521-3951</eissn><coden>PSSBBD</coden><abstract>The influence of arrangement and content of substituents (B, In) in BGaAs, InGaAs, and BInGaAs alloys on the stabilities and band gaps is investigated using density‐functional supercell calculations. The stability of ternary alloys decreases from InGaAs over BGaAs to GaAsN. Typical substituent structures show the following stability order: isolated substituents – [110] chains – clusters – twisted [111] chains – (200/211) arrangements (most stable). This is valid for both the In‐ and B‐poor as well as the In‐ and B‐rich alloys. From the fact that grown InGaAs provides a different gap than the most stable arrangement one can conclude that other structures (isolated indium atoms or Inm As clusters) are formed during the growth. Simultaneous substitutions (BInGaAs) of larger (In) and smaller (B) atoms prefer arrangements in larger distances (220) for isovalent boron substitution and in In–B bonds for antisite boron substitution. The high degree boron antisite substitution induces partially occupied acceptor bands which lead to a strong reduction of the band gap in comparison to the isovalent substitution. (© 2007 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssb.200642215</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0370-1972
ispartof Physica Status Solidi (b), 2007-06, Vol.244 (6), p.1957-1963
issn 0370-1972
1521-3951
language eng
recordid cdi_proquest_miscellaneous_30004686
source Wiley Online Library Journals Frontfile Complete
subjects 61.66.Dk
64.75.+g
71.20.Nr
81.05.Ea
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Electron density of states and band structure of crystalline solids
Electron states
Exact sciences and technology
Physics
Semiconductor compounds
title Stability and band gaps of InGaAs, BGaAs, and BInGaAs alloys: Density-functional supercell calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20band%20gaps%20of%20InGaAs,%20BGaAs,%20and%20BInGaAs%20alloys:%20Density-functional%20supercell%20calculations&rft.jtitle=Physica%20Status%20Solidi%20(b)&rft.au=Jenichen,%20Arndt&rft.date=2007-06&rft.volume=244&rft.issue=6&rft.spage=1957&rft.epage=1963&rft.pages=1957-1963&rft.issn=0370-1972&rft.eissn=1521-3951&rft.coden=PSSBBD&rft_id=info:doi/10.1002/pssb.200642215&rft_dat=%3Cproquest_cross%3E30004686%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30004686&rft_id=info:pmid/&rfr_iscdi=true