Theory of piezoresistivity for strain sensing in carbon fiber reinforced cement under flexure
A theory is provided for piezoresistivity in carbon fiber reinforced cement (with and without embedded steel reinforcing bars) under flexure (three-point bending). The phenomenon, which involves the reversible increase of the tension surface electrical resistance and the reversible decrease of the c...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2007-08, Vol.42 (15), p.6222-6233 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6233 |
---|---|
container_issue | 15 |
container_start_page | 6222 |
container_title | Journal of materials science |
container_volume | 42 |
creator | SIRONG ZHU CHUNG, D. D. L |
description | A theory is provided for piezoresistivity in carbon fiber reinforced cement (with and without embedded steel reinforcing bars) under flexure (three-point bending). The phenomenon, which involves the reversible increase of the tension surface electrical resistance and the reversible decrease of the compression surface electrical resistance upon flexure, allows strain sensing. The theory is based on the concept that the piezoresistivity is due to the slight pull-out of crack-bridging fibers during crack opening and the consequent increase in the contact electrical resistivity of the fiber-matrix interface. This work is an extension of prior theory, which concerns the effect of uniaxial loading on the volume resistance. The extension requires modeling the surface resistance and its change under flexure. The theoretical results on the piezoresistivity, both with and without rebar, are in good agreement with prior experimental results. Differences between theoretical and experimental results are probably due to minor damage and rebar debonding during flexure. |
doi_str_mv | 10.1007/s10853-006-1131-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30004498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259700914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-dabced1b8ed9b0d9a94dc5b8649fd31efa37f85f602dbd848fd74e2fc771ed853</originalsourceid><addsrcrecordid>eNp9kU-LFDEQxYMoOK5-AG8BUby0Vv50JznKsurCgpf1KCGdVDRLTzIm3eL46c0wC4KHPVVR_N6DV4-QlwzeMQD1vjHQoxgApoExwQbxiOzYqMQgNYjHZAfA-cDlxJ6SZ63dAcCoONuRb7c_sNQjLZEeEv4pFVtqa_qV1iONpdK2VpcybZhbyt9pX72rc8k0phkrrZhyxzwG6nGPeaVbDv0eF_y9VXxOnkS3NHxxPy_I149Xt5efh5svn64vP9wMXkxqHYKbuwObNQYzQzDOyODHWU_SxCAYRidU1GOcgIc5aKljUBJ59EoxDD33BXlz9j3U8nPDttp9ah6XxWUsW7Oi55XS6A6-fRDsX-TMyEnKjr76D70rW809huV8NArAsBPFzpSvpbWK0R5q2rt67Fb21Iw9N2N7M_bUjBVd8_re2TXvllhd9qn9E2rDFAgl_gJXfI-H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259700914</pqid></control><display><type>article</type><title>Theory of piezoresistivity for strain sensing in carbon fiber reinforced cement under flexure</title><source>SpringerLink Journals - AutoHoldings</source><creator>SIRONG ZHU ; CHUNG, D. D. L</creator><creatorcontrib>SIRONG ZHU ; CHUNG, D. D. L</creatorcontrib><description>A theory is provided for piezoresistivity in carbon fiber reinforced cement (with and without embedded steel reinforcing bars) under flexure (three-point bending). The phenomenon, which involves the reversible increase of the tension surface electrical resistance and the reversible decrease of the compression surface electrical resistance upon flexure, allows strain sensing. The theory is based on the concept that the piezoresistivity is due to the slight pull-out of crack-bridging fibers during crack opening and the consequent increase in the contact electrical resistivity of the fiber-matrix interface. This work is an extension of prior theory, which concerns the effect of uniaxial loading on the volume resistance. The extension requires modeling the surface resistance and its change under flexure. The theoretical results on the piezoresistivity, both with and without rebar, are in good agreement with prior experimental results. Differences between theoretical and experimental results are probably due to minor damage and rebar debonding during flexure.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-006-1131-3</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied sciences ; Buildings. Public works ; Carbon fiber reinforced cements ; Carbon fiber reinforcement ; Carbon fibers ; Cement concrete constituents ; Cement reinforcements ; Cements ; Crack bridging ; Detection ; Electric contacts ; Electrical resistance ; Exact sciences and technology ; Fiber reinforced cements ; Fiber reinforced materials ; Flexing ; Materials ; Materials science ; Piezoresistivity ; Properties and test methods ; Properties of anhydrous and hydrated cement, test methods ; Rebar ; Reinforcing steels ; Steel structures ; Strain ; Surface resistance ; Theory</subject><ispartof>Journal of materials science, 2007-08, Vol.42 (15), p.6222-6233</ispartof><rights>2007 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2007). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-dabced1b8ed9b0d9a94dc5b8649fd31efa37f85f602dbd848fd74e2fc771ed853</citedby><cites>FETCH-LOGICAL-c367t-dabced1b8ed9b0d9a94dc5b8649fd31efa37f85f602dbd848fd74e2fc771ed853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18917037$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SIRONG ZHU</creatorcontrib><creatorcontrib>CHUNG, D. D. L</creatorcontrib><title>Theory of piezoresistivity for strain sensing in carbon fiber reinforced cement under flexure</title><title>Journal of materials science</title><description>A theory is provided for piezoresistivity in carbon fiber reinforced cement (with and without embedded steel reinforcing bars) under flexure (three-point bending). The phenomenon, which involves the reversible increase of the tension surface electrical resistance and the reversible decrease of the compression surface electrical resistance upon flexure, allows strain sensing. The theory is based on the concept that the piezoresistivity is due to the slight pull-out of crack-bridging fibers during crack opening and the consequent increase in the contact electrical resistivity of the fiber-matrix interface. This work is an extension of prior theory, which concerns the effect of uniaxial loading on the volume resistance. The extension requires modeling the surface resistance and its change under flexure. The theoretical results on the piezoresistivity, both with and without rebar, are in good agreement with prior experimental results. Differences between theoretical and experimental results are probably due to minor damage and rebar debonding during flexure.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Carbon fiber reinforced cements</subject><subject>Carbon fiber reinforcement</subject><subject>Carbon fibers</subject><subject>Cement concrete constituents</subject><subject>Cement reinforcements</subject><subject>Cements</subject><subject>Crack bridging</subject><subject>Detection</subject><subject>Electric contacts</subject><subject>Electrical resistance</subject><subject>Exact sciences and technology</subject><subject>Fiber reinforced cements</subject><subject>Fiber reinforced materials</subject><subject>Flexing</subject><subject>Materials</subject><subject>Materials science</subject><subject>Piezoresistivity</subject><subject>Properties and test methods</subject><subject>Properties of anhydrous and hydrated cement, test methods</subject><subject>Rebar</subject><subject>Reinforcing steels</subject><subject>Steel structures</subject><subject>Strain</subject><subject>Surface resistance</subject><subject>Theory</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU-LFDEQxYMoOK5-AG8BUby0Vv50JznKsurCgpf1KCGdVDRLTzIm3eL46c0wC4KHPVVR_N6DV4-QlwzeMQD1vjHQoxgApoExwQbxiOzYqMQgNYjHZAfA-cDlxJ6SZ63dAcCoONuRb7c_sNQjLZEeEv4pFVtqa_qV1iONpdK2VpcybZhbyt9pX72rc8k0phkrrZhyxzwG6nGPeaVbDv0eF_y9VXxOnkS3NHxxPy_I149Xt5efh5svn64vP9wMXkxqHYKbuwObNQYzQzDOyODHWU_SxCAYRidU1GOcgIc5aKljUBJ59EoxDD33BXlz9j3U8nPDttp9ah6XxWUsW7Oi55XS6A6-fRDsX-TMyEnKjr76D70rW809huV8NArAsBPFzpSvpbWK0R5q2rt67Fb21Iw9N2N7M_bUjBVd8_re2TXvllhd9qn9E2rDFAgl_gJXfI-H</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>SIRONG ZHU</creator><creator>CHUNG, D. D. L</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20070801</creationdate><title>Theory of piezoresistivity for strain sensing in carbon fiber reinforced cement under flexure</title><author>SIRONG ZHU ; CHUNG, D. D. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-dabced1b8ed9b0d9a94dc5b8649fd31efa37f85f602dbd848fd74e2fc771ed853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Carbon fiber reinforced cements</topic><topic>Carbon fiber reinforcement</topic><topic>Carbon fibers</topic><topic>Cement concrete constituents</topic><topic>Cement reinforcements</topic><topic>Cements</topic><topic>Crack bridging</topic><topic>Detection</topic><topic>Electric contacts</topic><topic>Electrical resistance</topic><topic>Exact sciences and technology</topic><topic>Fiber reinforced cements</topic><topic>Fiber reinforced materials</topic><topic>Flexing</topic><topic>Materials</topic><topic>Materials science</topic><topic>Piezoresistivity</topic><topic>Properties and test methods</topic><topic>Properties of anhydrous and hydrated cement, test methods</topic><topic>Rebar</topic><topic>Reinforcing steels</topic><topic>Steel structures</topic><topic>Strain</topic><topic>Surface resistance</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SIRONG ZHU</creatorcontrib><creatorcontrib>CHUNG, D. D. L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SIRONG ZHU</au><au>CHUNG, D. D. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of piezoresistivity for strain sensing in carbon fiber reinforced cement under flexure</atitle><jtitle>Journal of materials science</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>42</volume><issue>15</issue><spage>6222</spage><epage>6233</epage><pages>6222-6233</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>A theory is provided for piezoresistivity in carbon fiber reinforced cement (with and without embedded steel reinforcing bars) under flexure (three-point bending). The phenomenon, which involves the reversible increase of the tension surface electrical resistance and the reversible decrease of the compression surface electrical resistance upon flexure, allows strain sensing. The theory is based on the concept that the piezoresistivity is due to the slight pull-out of crack-bridging fibers during crack opening and the consequent increase in the contact electrical resistivity of the fiber-matrix interface. This work is an extension of prior theory, which concerns the effect of uniaxial loading on the volume resistance. The extension requires modeling the surface resistance and its change under flexure. The theoretical results on the piezoresistivity, both with and without rebar, are in good agreement with prior experimental results. Differences between theoretical and experimental results are probably due to minor damage and rebar debonding during flexure.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10853-006-1131-3</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2007-08, Vol.42 (15), p.6222-6233 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_30004498 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied sciences Buildings. Public works Carbon fiber reinforced cements Carbon fiber reinforcement Carbon fibers Cement concrete constituents Cement reinforcements Cements Crack bridging Detection Electric contacts Electrical resistance Exact sciences and technology Fiber reinforced cements Fiber reinforced materials Flexing Materials Materials science Piezoresistivity Properties and test methods Properties of anhydrous and hydrated cement, test methods Rebar Reinforcing steels Steel structures Strain Surface resistance Theory |
title | Theory of piezoresistivity for strain sensing in carbon fiber reinforced cement under flexure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A20%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20piezoresistivity%20for%20strain%20sensing%20in%20carbon%20fiber%20reinforced%20cement%20under%20flexure&rft.jtitle=Journal%20of%20materials%20science&rft.au=SIRONG%20ZHU&rft.date=2007-08-01&rft.volume=42&rft.issue=15&rft.spage=6222&rft.epage=6233&rft.pages=6222-6233&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1007/s10853-006-1131-3&rft_dat=%3Cproquest_cross%3E2259700914%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259700914&rft_id=info:pmid/&rfr_iscdi=true |