Theory of piezoresistivity for strain sensing in carbon fiber reinforced cement under flexure

A theory is provided for piezoresistivity in carbon fiber reinforced cement (with and without embedded steel reinforcing bars) under flexure (three-point bending). The phenomenon, which involves the reversible increase of the tension surface electrical resistance and the reversible decrease of the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2007-08, Vol.42 (15), p.6222-6233
Hauptverfasser: SIRONG ZHU, CHUNG, D. D. L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6233
container_issue 15
container_start_page 6222
container_title Journal of materials science
container_volume 42
creator SIRONG ZHU
CHUNG, D. D. L
description A theory is provided for piezoresistivity in carbon fiber reinforced cement (with and without embedded steel reinforcing bars) under flexure (three-point bending). The phenomenon, which involves the reversible increase of the tension surface electrical resistance and the reversible decrease of the compression surface electrical resistance upon flexure, allows strain sensing. The theory is based on the concept that the piezoresistivity is due to the slight pull-out of crack-bridging fibers during crack opening and the consequent increase in the contact electrical resistivity of the fiber-matrix interface. This work is an extension of prior theory, which concerns the effect of uniaxial loading on the volume resistance. The extension requires modeling the surface resistance and its change under flexure. The theoretical results on the piezoresistivity, both with and without rebar, are in good agreement with prior experimental results. Differences between theoretical and experimental results are probably due to minor damage and rebar debonding during flexure.
doi_str_mv 10.1007/s10853-006-1131-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30004498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259700914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-dabced1b8ed9b0d9a94dc5b8649fd31efa37f85f602dbd848fd74e2fc771ed853</originalsourceid><addsrcrecordid>eNp9kU-LFDEQxYMoOK5-AG8BUby0Vv50JznKsurCgpf1KCGdVDRLTzIm3eL46c0wC4KHPVVR_N6DV4-QlwzeMQD1vjHQoxgApoExwQbxiOzYqMQgNYjHZAfA-cDlxJ6SZ63dAcCoONuRb7c_sNQjLZEeEv4pFVtqa_qV1iONpdK2VpcybZhbyt9pX72rc8k0phkrrZhyxzwG6nGPeaVbDv0eF_y9VXxOnkS3NHxxPy_I149Xt5efh5svn64vP9wMXkxqHYKbuwObNQYzQzDOyODHWU_SxCAYRidU1GOcgIc5aKljUBJ59EoxDD33BXlz9j3U8nPDttp9ah6XxWUsW7Oi55XS6A6-fRDsX-TMyEnKjr76D70rW809huV8NArAsBPFzpSvpbWK0R5q2rt67Fb21Iw9N2N7M_bUjBVd8_re2TXvllhd9qn9E2rDFAgl_gJXfI-H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259700914</pqid></control><display><type>article</type><title>Theory of piezoresistivity for strain sensing in carbon fiber reinforced cement under flexure</title><source>SpringerLink Journals - AutoHoldings</source><creator>SIRONG ZHU ; CHUNG, D. D. L</creator><creatorcontrib>SIRONG ZHU ; CHUNG, D. D. L</creatorcontrib><description>A theory is provided for piezoresistivity in carbon fiber reinforced cement (with and without embedded steel reinforcing bars) under flexure (three-point bending). The phenomenon, which involves the reversible increase of the tension surface electrical resistance and the reversible decrease of the compression surface electrical resistance upon flexure, allows strain sensing. The theory is based on the concept that the piezoresistivity is due to the slight pull-out of crack-bridging fibers during crack opening and the consequent increase in the contact electrical resistivity of the fiber-matrix interface. This work is an extension of prior theory, which concerns the effect of uniaxial loading on the volume resistance. The extension requires modeling the surface resistance and its change under flexure. The theoretical results on the piezoresistivity, both with and without rebar, are in good agreement with prior experimental results. Differences between theoretical and experimental results are probably due to minor damage and rebar debonding during flexure.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-006-1131-3</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied sciences ; Buildings. Public works ; Carbon fiber reinforced cements ; Carbon fiber reinforcement ; Carbon fibers ; Cement concrete constituents ; Cement reinforcements ; Cements ; Crack bridging ; Detection ; Electric contacts ; Electrical resistance ; Exact sciences and technology ; Fiber reinforced cements ; Fiber reinforced materials ; Flexing ; Materials ; Materials science ; Piezoresistivity ; Properties and test methods ; Properties of anhydrous and hydrated cement, test methods ; Rebar ; Reinforcing steels ; Steel structures ; Strain ; Surface resistance ; Theory</subject><ispartof>Journal of materials science, 2007-08, Vol.42 (15), p.6222-6233</ispartof><rights>2007 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2007). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-dabced1b8ed9b0d9a94dc5b8649fd31efa37f85f602dbd848fd74e2fc771ed853</citedby><cites>FETCH-LOGICAL-c367t-dabced1b8ed9b0d9a94dc5b8649fd31efa37f85f602dbd848fd74e2fc771ed853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18917037$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SIRONG ZHU</creatorcontrib><creatorcontrib>CHUNG, D. D. L</creatorcontrib><title>Theory of piezoresistivity for strain sensing in carbon fiber reinforced cement under flexure</title><title>Journal of materials science</title><description>A theory is provided for piezoresistivity in carbon fiber reinforced cement (with and without embedded steel reinforcing bars) under flexure (three-point bending). The phenomenon, which involves the reversible increase of the tension surface electrical resistance and the reversible decrease of the compression surface electrical resistance upon flexure, allows strain sensing. The theory is based on the concept that the piezoresistivity is due to the slight pull-out of crack-bridging fibers during crack opening and the consequent increase in the contact electrical resistivity of the fiber-matrix interface. This work is an extension of prior theory, which concerns the effect of uniaxial loading on the volume resistance. The extension requires modeling the surface resistance and its change under flexure. The theoretical results on the piezoresistivity, both with and without rebar, are in good agreement with prior experimental results. Differences between theoretical and experimental results are probably due to minor damage and rebar debonding during flexure.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Carbon fiber reinforced cements</subject><subject>Carbon fiber reinforcement</subject><subject>Carbon fibers</subject><subject>Cement concrete constituents</subject><subject>Cement reinforcements</subject><subject>Cements</subject><subject>Crack bridging</subject><subject>Detection</subject><subject>Electric contacts</subject><subject>Electrical resistance</subject><subject>Exact sciences and technology</subject><subject>Fiber reinforced cements</subject><subject>Fiber reinforced materials</subject><subject>Flexing</subject><subject>Materials</subject><subject>Materials science</subject><subject>Piezoresistivity</subject><subject>Properties and test methods</subject><subject>Properties of anhydrous and hydrated cement, test methods</subject><subject>Rebar</subject><subject>Reinforcing steels</subject><subject>Steel structures</subject><subject>Strain</subject><subject>Surface resistance</subject><subject>Theory</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU-LFDEQxYMoOK5-AG8BUby0Vv50JznKsurCgpf1KCGdVDRLTzIm3eL46c0wC4KHPVVR_N6DV4-QlwzeMQD1vjHQoxgApoExwQbxiOzYqMQgNYjHZAfA-cDlxJ6SZ63dAcCoONuRb7c_sNQjLZEeEv4pFVtqa_qV1iONpdK2VpcybZhbyt9pX72rc8k0phkrrZhyxzwG6nGPeaVbDv0eF_y9VXxOnkS3NHxxPy_I149Xt5efh5svn64vP9wMXkxqHYKbuwObNQYzQzDOyODHWU_SxCAYRidU1GOcgIc5aKljUBJ59EoxDD33BXlz9j3U8nPDttp9ah6XxWUsW7Oi55XS6A6-fRDsX-TMyEnKjr76D70rW809huV8NArAsBPFzpSvpbWK0R5q2rt67Fb21Iw9N2N7M_bUjBVd8_re2TXvllhd9qn9E2rDFAgl_gJXfI-H</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>SIRONG ZHU</creator><creator>CHUNG, D. D. L</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20070801</creationdate><title>Theory of piezoresistivity for strain sensing in carbon fiber reinforced cement under flexure</title><author>SIRONG ZHU ; CHUNG, D. D. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-dabced1b8ed9b0d9a94dc5b8649fd31efa37f85f602dbd848fd74e2fc771ed853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Carbon fiber reinforced cements</topic><topic>Carbon fiber reinforcement</topic><topic>Carbon fibers</topic><topic>Cement concrete constituents</topic><topic>Cement reinforcements</topic><topic>Cements</topic><topic>Crack bridging</topic><topic>Detection</topic><topic>Electric contacts</topic><topic>Electrical resistance</topic><topic>Exact sciences and technology</topic><topic>Fiber reinforced cements</topic><topic>Fiber reinforced materials</topic><topic>Flexing</topic><topic>Materials</topic><topic>Materials science</topic><topic>Piezoresistivity</topic><topic>Properties and test methods</topic><topic>Properties of anhydrous and hydrated cement, test methods</topic><topic>Rebar</topic><topic>Reinforcing steels</topic><topic>Steel structures</topic><topic>Strain</topic><topic>Surface resistance</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SIRONG ZHU</creatorcontrib><creatorcontrib>CHUNG, D. D. L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SIRONG ZHU</au><au>CHUNG, D. D. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of piezoresistivity for strain sensing in carbon fiber reinforced cement under flexure</atitle><jtitle>Journal of materials science</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>42</volume><issue>15</issue><spage>6222</spage><epage>6233</epage><pages>6222-6233</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>A theory is provided for piezoresistivity in carbon fiber reinforced cement (with and without embedded steel reinforcing bars) under flexure (three-point bending). The phenomenon, which involves the reversible increase of the tension surface electrical resistance and the reversible decrease of the compression surface electrical resistance upon flexure, allows strain sensing. The theory is based on the concept that the piezoresistivity is due to the slight pull-out of crack-bridging fibers during crack opening and the consequent increase in the contact electrical resistivity of the fiber-matrix interface. This work is an extension of prior theory, which concerns the effect of uniaxial loading on the volume resistance. The extension requires modeling the surface resistance and its change under flexure. The theoretical results on the piezoresistivity, both with and without rebar, are in good agreement with prior experimental results. Differences between theoretical and experimental results are probably due to minor damage and rebar debonding during flexure.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10853-006-1131-3</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2007-08, Vol.42 (15), p.6222-6233
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_30004498
source SpringerLink Journals - AutoHoldings
subjects Applied sciences
Buildings. Public works
Carbon fiber reinforced cements
Carbon fiber reinforcement
Carbon fibers
Cement concrete constituents
Cement reinforcements
Cements
Crack bridging
Detection
Electric contacts
Electrical resistance
Exact sciences and technology
Fiber reinforced cements
Fiber reinforced materials
Flexing
Materials
Materials science
Piezoresistivity
Properties and test methods
Properties of anhydrous and hydrated cement, test methods
Rebar
Reinforcing steels
Steel structures
Strain
Surface resistance
Theory
title Theory of piezoresistivity for strain sensing in carbon fiber reinforced cement under flexure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A20%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20piezoresistivity%20for%20strain%20sensing%20in%20carbon%20fiber%20reinforced%20cement%20under%20flexure&rft.jtitle=Journal%20of%20materials%20science&rft.au=SIRONG%20ZHU&rft.date=2007-08-01&rft.volume=42&rft.issue=15&rft.spage=6222&rft.epage=6233&rft.pages=6222-6233&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1007/s10853-006-1131-3&rft_dat=%3Cproquest_cross%3E2259700914%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259700914&rft_id=info:pmid/&rfr_iscdi=true