On the existence and stability of solutions for the micropolar fluids in exterior domains
We prove the existence of a global strong solution in some class of Marcinkiewicz spaces for the micropolar fluid in an exterior domain of R3, with initial conditions being a non‐smooth disturbance of a steady solution. We also analyse the large time behaviour of those solutions and apply our result...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2007-07, Vol.30 (10), p.1185-1208 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1208 |
---|---|
container_issue | 10 |
container_start_page | 1185 |
container_title | Mathematical methods in the applied sciences |
container_volume | 30 |
creator | Ferreira, L. C. F. Villamizar-Roa, E. J. |
description | We prove the existence of a global strong solution in some class of Marcinkiewicz spaces for the micropolar fluid in an exterior domain of R3, with initial conditions being a non‐smooth disturbance of a steady solution. We also analyse the large time behaviour of those solutions and apply our results in the context of the Navier–Stokes equations. Copyright © 2007 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/mma.838 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30000624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30000624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4268-913b6755694d59372e666cb26c142fb4a1f9d487e265761469a6bda1b27ba9713</originalsourceid><addsrcrecordid>eNp10E9PwyAcxnFiNHFO41vgoh5MJ1AK5TgX_yWb02Rm8URoSyNKy4Quuncv2kVPnrh88s2PB4BjjEYYIXLRNGqUp_kOGGAkRIIpZ7tggDBHCSWY7oODEF4RQjnGZACe5y3sXjTUnyZ0ui01VG0FQ6cKY023ga6Gwdl1Z1wbYO38D25M6d3KWeVhbdemCtC0sdBpb6KoXKNMGw7BXq1s0Efbdwierq8Wk9tkOr-5m4ynSUkJyxOB04LxLGOCVplIOdGMsbIgrMSU1AVVuBYVzbkmLOMMUyYUKyqFC8ILJThOh-C07668e1_r0MnGhFJbq1rt1kGm8a-IERrhWQ_j8SF4XcuVN43yG4mR_J5OxulknC7Kk21ShVLZ2qu2NOGP51yQeE505737MFZv_svJ2WzcV5Nefy_9-auVf5OMpzyTy_sbmV0-PGbL_EEu0i8WbIr6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30000624</pqid></control><display><type>article</type><title>On the existence and stability of solutions for the micropolar fluids in exterior domains</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ferreira, L. C. F. ; Villamizar-Roa, E. J.</creator><creatorcontrib>Ferreira, L. C. F. ; Villamizar-Roa, E. J.</creatorcontrib><description>We prove the existence of a global strong solution in some class of Marcinkiewicz spaces for the micropolar fluid in an exterior domain of R3, with initial conditions being a non‐smooth disturbance of a steady solution. We also analyse the large time behaviour of those solutions and apply our results in the context of the Navier–Stokes equations. Copyright © 2007 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.838</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Exact sciences and technology ; global strong solution ; large time behaviour ; Mathematical analysis ; Mathematics ; micropolar fluids ; Partial differential equations ; Sciences and techniques of general use</subject><ispartof>Mathematical methods in the applied sciences, 2007-07, Vol.30 (10), p.1185-1208</ispartof><rights>Copyright © 2007 John Wiley & Sons, Ltd.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4268-913b6755694d59372e666cb26c142fb4a1f9d487e265761469a6bda1b27ba9713</citedby><cites>FETCH-LOGICAL-c4268-913b6755694d59372e666cb26c142fb4a1f9d487e265761469a6bda1b27ba9713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.838$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.838$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18792265$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferreira, L. C. F.</creatorcontrib><creatorcontrib>Villamizar-Roa, E. J.</creatorcontrib><title>On the existence and stability of solutions for the micropolar fluids in exterior domains</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>We prove the existence of a global strong solution in some class of Marcinkiewicz spaces for the micropolar fluid in an exterior domain of R3, with initial conditions being a non‐smooth disturbance of a steady solution. We also analyse the large time behaviour of those solutions and apply our results in the context of the Navier–Stokes equations. Copyright © 2007 John Wiley & Sons, Ltd.</description><subject>Exact sciences and technology</subject><subject>global strong solution</subject><subject>large time behaviour</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>micropolar fluids</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp10E9PwyAcxnFiNHFO41vgoh5MJ1AK5TgX_yWb02Rm8URoSyNKy4Quuncv2kVPnrh88s2PB4BjjEYYIXLRNGqUp_kOGGAkRIIpZ7tggDBHCSWY7oODEF4RQjnGZACe5y3sXjTUnyZ0ui01VG0FQ6cKY023ga6Gwdl1Z1wbYO38D25M6d3KWeVhbdemCtC0sdBpb6KoXKNMGw7BXq1s0Efbdwierq8Wk9tkOr-5m4ynSUkJyxOB04LxLGOCVplIOdGMsbIgrMSU1AVVuBYVzbkmLOMMUyYUKyqFC8ILJThOh-C07668e1_r0MnGhFJbq1rt1kGm8a-IERrhWQ_j8SF4XcuVN43yG4mR_J5OxulknC7Kk21ShVLZ2qu2NOGP51yQeE505737MFZv_svJ2WzcV5Nefy_9-auVf5OMpzyTy_sbmV0-PGbL_EEu0i8WbIr6</recordid><startdate>20070710</startdate><enddate>20070710</enddate><creator>Ferreira, L. C. F.</creator><creator>Villamizar-Roa, E. J.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><general>Teubner</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20070710</creationdate><title>On the existence and stability of solutions for the micropolar fluids in exterior domains</title><author>Ferreira, L. C. F. ; Villamizar-Roa, E. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4268-913b6755694d59372e666cb26c142fb4a1f9d487e265761469a6bda1b27ba9713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Exact sciences and technology</topic><topic>global strong solution</topic><topic>large time behaviour</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>micropolar fluids</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira, L. C. F.</creatorcontrib><creatorcontrib>Villamizar-Roa, E. J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira, L. C. F.</au><au>Villamizar-Roa, E. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the existence and stability of solutions for the micropolar fluids in exterior domains</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2007-07-10</date><risdate>2007</risdate><volume>30</volume><issue>10</issue><spage>1185</spage><epage>1208</epage><pages>1185-1208</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>We prove the existence of a global strong solution in some class of Marcinkiewicz spaces for the micropolar fluid in an exterior domain of R3, with initial conditions being a non‐smooth disturbance of a steady solution. We also analyse the large time behaviour of those solutions and apply our results in the context of the Navier–Stokes equations. Copyright © 2007 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/mma.838</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2007-07, Vol.30 (10), p.1185-1208 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_miscellaneous_30000624 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Exact sciences and technology global strong solution large time behaviour Mathematical analysis Mathematics micropolar fluids Partial differential equations Sciences and techniques of general use |
title | On the existence and stability of solutions for the micropolar fluids in exterior domains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A52%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20existence%20and%20stability%20of%20solutions%20for%20the%20micropolar%20fluids%20in%20exterior%20domains&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Ferreira,%20L.%20C.%20F.&rft.date=2007-07-10&rft.volume=30&rft.issue=10&rft.spage=1185&rft.epage=1208&rft.pages=1185-1208&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.838&rft_dat=%3Cproquest_cross%3E30000624%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30000624&rft_id=info:pmid/&rfr_iscdi=true |