On the existence and stability of solutions for the micropolar fluids in exterior domains

We prove the existence of a global strong solution in some class of Marcinkiewicz spaces for the micropolar fluid in an exterior domain of R3, with initial conditions being a non‐smooth disturbance of a steady solution. We also analyse the large time behaviour of those solutions and apply our result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2007-07, Vol.30 (10), p.1185-1208
Hauptverfasser: Ferreira, L. C. F., Villamizar-Roa, E. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1208
container_issue 10
container_start_page 1185
container_title Mathematical methods in the applied sciences
container_volume 30
creator Ferreira, L. C. F.
Villamizar-Roa, E. J.
description We prove the existence of a global strong solution in some class of Marcinkiewicz spaces for the micropolar fluid in an exterior domain of R3, with initial conditions being a non‐smooth disturbance of a steady solution. We also analyse the large time behaviour of those solutions and apply our results in the context of the Navier–Stokes equations. Copyright © 2007 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.838
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30000624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30000624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4268-913b6755694d59372e666cb26c142fb4a1f9d487e265761469a6bda1b27ba9713</originalsourceid><addsrcrecordid>eNp10E9PwyAcxnFiNHFO41vgoh5MJ1AK5TgX_yWb02Rm8URoSyNKy4Quuncv2kVPnrh88s2PB4BjjEYYIXLRNGqUp_kOGGAkRIIpZ7tggDBHCSWY7oODEF4RQjnGZACe5y3sXjTUnyZ0ui01VG0FQ6cKY023ga6Gwdl1Z1wbYO38D25M6d3KWeVhbdemCtC0sdBpb6KoXKNMGw7BXq1s0Efbdwierq8Wk9tkOr-5m4ynSUkJyxOB04LxLGOCVplIOdGMsbIgrMSU1AVVuBYVzbkmLOMMUyYUKyqFC8ILJThOh-C07668e1_r0MnGhFJbq1rt1kGm8a-IERrhWQ_j8SF4XcuVN43yG4mR_J5OxulknC7Kk21ShVLZ2qu2NOGP51yQeE505737MFZv_svJ2WzcV5Nefy_9-auVf5OMpzyTy_sbmV0-PGbL_EEu0i8WbIr6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30000624</pqid></control><display><type>article</type><title>On the existence and stability of solutions for the micropolar fluids in exterior domains</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ferreira, L. C. F. ; Villamizar-Roa, E. J.</creator><creatorcontrib>Ferreira, L. C. F. ; Villamizar-Roa, E. J.</creatorcontrib><description>We prove the existence of a global strong solution in some class of Marcinkiewicz spaces for the micropolar fluid in an exterior domain of R3, with initial conditions being a non‐smooth disturbance of a steady solution. We also analyse the large time behaviour of those solutions and apply our results in the context of the Navier–Stokes equations. Copyright © 2007 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.838</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Exact sciences and technology ; global strong solution ; large time behaviour ; Mathematical analysis ; Mathematics ; micropolar fluids ; Partial differential equations ; Sciences and techniques of general use</subject><ispartof>Mathematical methods in the applied sciences, 2007-07, Vol.30 (10), p.1185-1208</ispartof><rights>Copyright © 2007 John Wiley &amp; Sons, Ltd.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4268-913b6755694d59372e666cb26c142fb4a1f9d487e265761469a6bda1b27ba9713</citedby><cites>FETCH-LOGICAL-c4268-913b6755694d59372e666cb26c142fb4a1f9d487e265761469a6bda1b27ba9713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.838$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.838$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18792265$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferreira, L. C. F.</creatorcontrib><creatorcontrib>Villamizar-Roa, E. J.</creatorcontrib><title>On the existence and stability of solutions for the micropolar fluids in exterior domains</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>We prove the existence of a global strong solution in some class of Marcinkiewicz spaces for the micropolar fluid in an exterior domain of R3, with initial conditions being a non‐smooth disturbance of a steady solution. We also analyse the large time behaviour of those solutions and apply our results in the context of the Navier–Stokes equations. Copyright © 2007 John Wiley &amp; Sons, Ltd.</description><subject>Exact sciences and technology</subject><subject>global strong solution</subject><subject>large time behaviour</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>micropolar fluids</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp10E9PwyAcxnFiNHFO41vgoh5MJ1AK5TgX_yWb02Rm8URoSyNKy4Quuncv2kVPnrh88s2PB4BjjEYYIXLRNGqUp_kOGGAkRIIpZ7tggDBHCSWY7oODEF4RQjnGZACe5y3sXjTUnyZ0ui01VG0FQ6cKY023ga6Gwdl1Z1wbYO38D25M6d3KWeVhbdemCtC0sdBpb6KoXKNMGw7BXq1s0Efbdwierq8Wk9tkOr-5m4ynSUkJyxOB04LxLGOCVplIOdGMsbIgrMSU1AVVuBYVzbkmLOMMUyYUKyqFC8ILJThOh-C07668e1_r0MnGhFJbq1rt1kGm8a-IERrhWQ_j8SF4XcuVN43yG4mR_J5OxulknC7Kk21ShVLZ2qu2NOGP51yQeE505737MFZv_svJ2WzcV5Nefy_9-auVf5OMpzyTy_sbmV0-PGbL_EEu0i8WbIr6</recordid><startdate>20070710</startdate><enddate>20070710</enddate><creator>Ferreira, L. C. F.</creator><creator>Villamizar-Roa, E. J.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><general>Teubner</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20070710</creationdate><title>On the existence and stability of solutions for the micropolar fluids in exterior domains</title><author>Ferreira, L. C. F. ; Villamizar-Roa, E. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4268-913b6755694d59372e666cb26c142fb4a1f9d487e265761469a6bda1b27ba9713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Exact sciences and technology</topic><topic>global strong solution</topic><topic>large time behaviour</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>micropolar fluids</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira, L. C. F.</creatorcontrib><creatorcontrib>Villamizar-Roa, E. J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira, L. C. F.</au><au>Villamizar-Roa, E. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the existence and stability of solutions for the micropolar fluids in exterior domains</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2007-07-10</date><risdate>2007</risdate><volume>30</volume><issue>10</issue><spage>1185</spage><epage>1208</epage><pages>1185-1208</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>We prove the existence of a global strong solution in some class of Marcinkiewicz spaces for the micropolar fluid in an exterior domain of R3, with initial conditions being a non‐smooth disturbance of a steady solution. We also analyse the large time behaviour of those solutions and apply our results in the context of the Navier–Stokes equations. Copyright © 2007 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/mma.838</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2007-07, Vol.30 (10), p.1185-1208
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_miscellaneous_30000624
source Wiley Online Library Journals Frontfile Complete
subjects Exact sciences and technology
global strong solution
large time behaviour
Mathematical analysis
Mathematics
micropolar fluids
Partial differential equations
Sciences and techniques of general use
title On the existence and stability of solutions for the micropolar fluids in exterior domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A52%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20existence%20and%20stability%20of%20solutions%20for%20the%20micropolar%20fluids%20in%20exterior%20domains&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Ferreira,%20L.%20C.%20F.&rft.date=2007-07-10&rft.volume=30&rft.issue=10&rft.spage=1185&rft.epage=1208&rft.pages=1185-1208&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.838&rft_dat=%3Cproquest_cross%3E30000624%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30000624&rft_id=info:pmid/&rfr_iscdi=true