Structural, electronic and thermodynamic properties of wide band gap MgxZn1−xO alloy

Structural, electronic and thermodynamic properties of a wide band gap semiconductor alloy MgxZn1−xO have been studied using ab initio method. Calculations have been made using full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). Fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2007-07, Vol.40 (1), p.66-72
Hauptverfasser: Amrani, B., Ahmed, Rashid, El Haj Hassan, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue 1
container_start_page 66
container_title Computational materials science
container_volume 40
creator Amrani, B.
Ahmed, Rashid
El Haj Hassan, F.
description Structural, electronic and thermodynamic properties of a wide band gap semiconductor alloy MgxZn1−xO have been studied using ab initio method. Calculations have been made using full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). For exchange-correlation energy and corresponding potential, generalized gradient approximation (GGA) by Perdew–Burke–Ernzerhof (PBE) and Engel–Vosko (EV) have been used. We analyze composition effect on lattice constants, bulk modulus, band gap and effective mass of the electron. It is observed that bulk modulus and band gap depend non-linearly on alloy composition x, whereas lattice constants and cohesive energy follow Vegard’s law. Using the approach of Bernard and Zunger [J.E. Bernard, A. Zunger, Phys. Rev. B 34 (1986) 5992.], the microscopic origin of the gap bowing is also elucidated. It is concluded that the energy band gap bowing is primarily due to chemical charge-transfer effect. Contribution of volume deformation and structural relaxation to the gap bowing parameter is found to be very small. Thermodynamic stability of MgxZn1−xO was also studied.
doi_str_mv 10.1016/j.commatsci.2006.11.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30000561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092702560600317X</els_id><sourcerecordid>30000561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-f2cc178f79dd19f9316f139712867989b12bceb818e5c3868d70cec329a25a003</originalsourceid><addsrcrecordid>eNqFkL1u2zAQgIkiAeq4eYZqSaZK5ZG2RI6BkaYBXHhokiELQZ9OLg1JdEi5sd8gcx8xT1IaDtoxtxxw-O7vY-wz8AI4lF_XBfqus0NEVwjOywKg4Bw-sBGoSudccThhI65FlXMxLT-ysxjXCSi1EiP28HMIWxy2wbZfMmoJh-B7h5nt62z4RaHz9b63Xapsgt9QGBzFzDfZs6spWx6old1kP1a7xx5eX_7sFpltW7__xE4b20Y6f8tjdv_t-m72PZ8vbm5nV_McJxMx5I1AhEo1la5r0I2WUDYgdQVClZVWegliibRUoGiKUpWqrjgSSqGtmFrO5ZhdHuem6562FAfTuYjUtrYnv41G8hTTEhJYHUEMPsZAjdkE19mwN8DNwaNZm38ezcGjATBJU-q8eFthI9q2CbZHF_-3KyWlnIjEXR05Sv_-dhRMmkQ9Uu1C0mpq797d9RdEZI5M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30000561</pqid></control><display><type>article</type><title>Structural, electronic and thermodynamic properties of wide band gap MgxZn1−xO alloy</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Amrani, B. ; Ahmed, Rashid ; El Haj Hassan, F.</creator><creatorcontrib>Amrani, B. ; Ahmed, Rashid ; El Haj Hassan, F.</creatorcontrib><description>Structural, electronic and thermodynamic properties of a wide band gap semiconductor alloy MgxZn1−xO have been studied using ab initio method. Calculations have been made using full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). For exchange-correlation energy and corresponding potential, generalized gradient approximation (GGA) by Perdew–Burke–Ernzerhof (PBE) and Engel–Vosko (EV) have been used. We analyze composition effect on lattice constants, bulk modulus, band gap and effective mass of the electron. It is observed that bulk modulus and band gap depend non-linearly on alloy composition x, whereas lattice constants and cohesive energy follow Vegard’s law. Using the approach of Bernard and Zunger [J.E. Bernard, A. Zunger, Phys. Rev. B 34 (1986) 5992.], the microscopic origin of the gap bowing is also elucidated. It is concluded that the energy band gap bowing is primarily due to chemical charge-transfer effect. Contribution of volume deformation and structural relaxation to the gap bowing parameter is found to be very small. Thermodynamic stability of MgxZn1−xO was also studied.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2006.11.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alloys ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Density functional theory ; Electron density of states and band structure of crystalline solids ; Electron states ; Exact sciences and technology ; FP-LAPW ; Gap bowing ; Inorganic compounds ; MgxZn1 − xO ; Physics ; Semiconductor compounds ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids ; Thermal properties of condensed matter ; Thermal properties of crystalline solids ; Thermodynamic properties</subject><ispartof>Computational materials science, 2007-07, Vol.40 (1), p.66-72</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-f2cc178f79dd19f9316f139712867989b12bceb818e5c3868d70cec329a25a003</citedby><cites>FETCH-LOGICAL-c442t-f2cc178f79dd19f9316f139712867989b12bceb818e5c3868d70cec329a25a003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.commatsci.2006.11.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18833342$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Amrani, B.</creatorcontrib><creatorcontrib>Ahmed, Rashid</creatorcontrib><creatorcontrib>El Haj Hassan, F.</creatorcontrib><title>Structural, electronic and thermodynamic properties of wide band gap MgxZn1−xO alloy</title><title>Computational materials science</title><description>Structural, electronic and thermodynamic properties of a wide band gap semiconductor alloy MgxZn1−xO have been studied using ab initio method. Calculations have been made using full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). For exchange-correlation energy and corresponding potential, generalized gradient approximation (GGA) by Perdew–Burke–Ernzerhof (PBE) and Engel–Vosko (EV) have been used. We analyze composition effect on lattice constants, bulk modulus, band gap and effective mass of the electron. It is observed that bulk modulus and band gap depend non-linearly on alloy composition x, whereas lattice constants and cohesive energy follow Vegard’s law. Using the approach of Bernard and Zunger [J.E. Bernard, A. Zunger, Phys. Rev. B 34 (1986) 5992.], the microscopic origin of the gap bowing is also elucidated. It is concluded that the energy band gap bowing is primarily due to chemical charge-transfer effect. Contribution of volume deformation and structural relaxation to the gap bowing parameter is found to be very small. Thermodynamic stability of MgxZn1−xO was also studied.</description><subject>Alloys</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Density functional theory</subject><subject>Electron density of states and band structure of crystalline solids</subject><subject>Electron states</subject><subject>Exact sciences and technology</subject><subject>FP-LAPW</subject><subject>Gap bowing</subject><subject>Inorganic compounds</subject><subject>MgxZn1 − xO</subject><subject>Physics</subject><subject>Semiconductor compounds</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of crystalline solids</subject><subject>Thermodynamic properties</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkL1u2zAQgIkiAeq4eYZqSaZK5ZG2RI6BkaYBXHhokiELQZ9OLg1JdEi5sd8gcx8xT1IaDtoxtxxw-O7vY-wz8AI4lF_XBfqus0NEVwjOywKg4Bw-sBGoSudccThhI65FlXMxLT-ysxjXCSi1EiP28HMIWxy2wbZfMmoJh-B7h5nt62z4RaHz9b63Xapsgt9QGBzFzDfZs6spWx6old1kP1a7xx5eX_7sFpltW7__xE4b20Y6f8tjdv_t-m72PZ8vbm5nV_McJxMx5I1AhEo1la5r0I2WUDYgdQVClZVWegliibRUoGiKUpWqrjgSSqGtmFrO5ZhdHuem6562FAfTuYjUtrYnv41G8hTTEhJYHUEMPsZAjdkE19mwN8DNwaNZm38ezcGjATBJU-q8eFthI9q2CbZHF_-3KyWlnIjEXR05Sv_-dhRMmkQ9Uu1C0mpq797d9RdEZI5M</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Amrani, B.</creator><creator>Ahmed, Rashid</creator><creator>El Haj Hassan, F.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070701</creationdate><title>Structural, electronic and thermodynamic properties of wide band gap MgxZn1−xO alloy</title><author>Amrani, B. ; Ahmed, Rashid ; El Haj Hassan, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-f2cc178f79dd19f9316f139712867989b12bceb818e5c3868d70cec329a25a003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Alloys</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Density functional theory</topic><topic>Electron density of states and band structure of crystalline solids</topic><topic>Electron states</topic><topic>Exact sciences and technology</topic><topic>FP-LAPW</topic><topic>Gap bowing</topic><topic>Inorganic compounds</topic><topic>MgxZn1 − xO</topic><topic>Physics</topic><topic>Semiconductor compounds</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of crystalline solids</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amrani, B.</creatorcontrib><creatorcontrib>Ahmed, Rashid</creatorcontrib><creatorcontrib>El Haj Hassan, F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amrani, B.</au><au>Ahmed, Rashid</au><au>El Haj Hassan, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural, electronic and thermodynamic properties of wide band gap MgxZn1−xO alloy</atitle><jtitle>Computational materials science</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>40</volume><issue>1</issue><spage>66</spage><epage>72</epage><pages>66-72</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>Structural, electronic and thermodynamic properties of a wide band gap semiconductor alloy MgxZn1−xO have been studied using ab initio method. Calculations have been made using full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). For exchange-correlation energy and corresponding potential, generalized gradient approximation (GGA) by Perdew–Burke–Ernzerhof (PBE) and Engel–Vosko (EV) have been used. We analyze composition effect on lattice constants, bulk modulus, band gap and effective mass of the electron. It is observed that bulk modulus and band gap depend non-linearly on alloy composition x, whereas lattice constants and cohesive energy follow Vegard’s law. Using the approach of Bernard and Zunger [J.E. Bernard, A. Zunger, Phys. Rev. B 34 (1986) 5992.], the microscopic origin of the gap bowing is also elucidated. It is concluded that the energy band gap bowing is primarily due to chemical charge-transfer effect. Contribution of volume deformation and structural relaxation to the gap bowing parameter is found to be very small. Thermodynamic stability of MgxZn1−xO was also studied.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2006.11.001</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2007-07, Vol.40 (1), p.66-72
issn 0927-0256
1879-0801
language eng
recordid cdi_proquest_miscellaneous_30000561
source ScienceDirect Journals (5 years ago - present)
subjects Alloys
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Density functional theory
Electron density of states and band structure of crystalline solids
Electron states
Exact sciences and technology
FP-LAPW
Gap bowing
Inorganic compounds
MgxZn1 − xO
Physics
Semiconductor compounds
Structure of solids and liquids
crystallography
Structure of specific crystalline solids
Thermal properties of condensed matter
Thermal properties of crystalline solids
Thermodynamic properties
title Structural, electronic and thermodynamic properties of wide band gap MgxZn1−xO alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A40%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural,%20electronic%20and%20thermodynamic%20properties%20of%20wide%20band%20gap%20MgxZn1%E2%88%92xO%20alloy&rft.jtitle=Computational%20materials%20science&rft.au=Amrani,%20B.&rft.date=2007-07-01&rft.volume=40&rft.issue=1&rft.spage=66&rft.epage=72&rft.pages=66-72&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2006.11.001&rft_dat=%3Cproquest_cross%3E30000561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30000561&rft_id=info:pmid/&rft_els_id=S092702560600317X&rfr_iscdi=true