Structural, electronic and thermodynamic properties of wide band gap MgxZn1−xO alloy
Structural, electronic and thermodynamic properties of a wide band gap semiconductor alloy MgxZn1−xO have been studied using ab initio method. Calculations have been made using full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). Fo...
Gespeichert in:
Veröffentlicht in: | Computational materials science 2007-07, Vol.40 (1), p.66-72 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | 1 |
container_start_page | 66 |
container_title | Computational materials science |
container_volume | 40 |
creator | Amrani, B. Ahmed, Rashid El Haj Hassan, F. |
description | Structural, electronic and thermodynamic properties of a wide band gap semiconductor alloy MgxZn1−xO have been studied using ab initio method. Calculations have been made using full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). For exchange-correlation energy and corresponding potential, generalized gradient approximation (GGA) by Perdew–Burke–Ernzerhof (PBE) and Engel–Vosko (EV) have been used. We analyze composition effect on lattice constants, bulk modulus, band gap and effective mass of the electron. It is observed that bulk modulus and band gap depend non-linearly on alloy composition x, whereas lattice constants and cohesive energy follow Vegard’s law. Using the approach of Bernard and Zunger [J.E. Bernard, A. Zunger, Phys. Rev. B 34 (1986) 5992.], the microscopic origin of the gap bowing is also elucidated. It is concluded that the energy band gap bowing is primarily due to chemical charge-transfer effect. Contribution of volume deformation and structural relaxation to the gap bowing parameter is found to be very small. Thermodynamic stability of MgxZn1−xO was also studied. |
doi_str_mv | 10.1016/j.commatsci.2006.11.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30000561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092702560600317X</els_id><sourcerecordid>30000561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-f2cc178f79dd19f9316f139712867989b12bceb818e5c3868d70cec329a25a003</originalsourceid><addsrcrecordid>eNqFkL1u2zAQgIkiAeq4eYZqSaZK5ZG2RI6BkaYBXHhokiELQZ9OLg1JdEi5sd8gcx8xT1IaDtoxtxxw-O7vY-wz8AI4lF_XBfqus0NEVwjOywKg4Bw-sBGoSudccThhI65FlXMxLT-ysxjXCSi1EiP28HMIWxy2wbZfMmoJh-B7h5nt62z4RaHz9b63Xapsgt9QGBzFzDfZs6spWx6old1kP1a7xx5eX_7sFpltW7__xE4b20Y6f8tjdv_t-m72PZ8vbm5nV_McJxMx5I1AhEo1la5r0I2WUDYgdQVClZVWegliibRUoGiKUpWqrjgSSqGtmFrO5ZhdHuem6562FAfTuYjUtrYnv41G8hTTEhJYHUEMPsZAjdkE19mwN8DNwaNZm38ezcGjATBJU-q8eFthI9q2CbZHF_-3KyWlnIjEXR05Sv_-dhRMmkQ9Uu1C0mpq797d9RdEZI5M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30000561</pqid></control><display><type>article</type><title>Structural, electronic and thermodynamic properties of wide band gap MgxZn1−xO alloy</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Amrani, B. ; Ahmed, Rashid ; El Haj Hassan, F.</creator><creatorcontrib>Amrani, B. ; Ahmed, Rashid ; El Haj Hassan, F.</creatorcontrib><description>Structural, electronic and thermodynamic properties of a wide band gap semiconductor alloy MgxZn1−xO have been studied using ab initio method. Calculations have been made using full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). For exchange-correlation energy and corresponding potential, generalized gradient approximation (GGA) by Perdew–Burke–Ernzerhof (PBE) and Engel–Vosko (EV) have been used. We analyze composition effect on lattice constants, bulk modulus, band gap and effective mass of the electron. It is observed that bulk modulus and band gap depend non-linearly on alloy composition x, whereas lattice constants and cohesive energy follow Vegard’s law. Using the approach of Bernard and Zunger [J.E. Bernard, A. Zunger, Phys. Rev. B 34 (1986) 5992.], the microscopic origin of the gap bowing is also elucidated. It is concluded that the energy band gap bowing is primarily due to chemical charge-transfer effect. Contribution of volume deformation and structural relaxation to the gap bowing parameter is found to be very small. Thermodynamic stability of MgxZn1−xO was also studied.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2006.11.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alloys ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Density functional theory ; Electron density of states and band structure of crystalline solids ; Electron states ; Exact sciences and technology ; FP-LAPW ; Gap bowing ; Inorganic compounds ; MgxZn1 − xO ; Physics ; Semiconductor compounds ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids ; Thermal properties of condensed matter ; Thermal properties of crystalline solids ; Thermodynamic properties</subject><ispartof>Computational materials science, 2007-07, Vol.40 (1), p.66-72</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-f2cc178f79dd19f9316f139712867989b12bceb818e5c3868d70cec329a25a003</citedby><cites>FETCH-LOGICAL-c442t-f2cc178f79dd19f9316f139712867989b12bceb818e5c3868d70cec329a25a003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.commatsci.2006.11.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18833342$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Amrani, B.</creatorcontrib><creatorcontrib>Ahmed, Rashid</creatorcontrib><creatorcontrib>El Haj Hassan, F.</creatorcontrib><title>Structural, electronic and thermodynamic properties of wide band gap MgxZn1−xO alloy</title><title>Computational materials science</title><description>Structural, electronic and thermodynamic properties of a wide band gap semiconductor alloy MgxZn1−xO have been studied using ab initio method. Calculations have been made using full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). For exchange-correlation energy and corresponding potential, generalized gradient approximation (GGA) by Perdew–Burke–Ernzerhof (PBE) and Engel–Vosko (EV) have been used. We analyze composition effect on lattice constants, bulk modulus, band gap and effective mass of the electron. It is observed that bulk modulus and band gap depend non-linearly on alloy composition x, whereas lattice constants and cohesive energy follow Vegard’s law. Using the approach of Bernard and Zunger [J.E. Bernard, A. Zunger, Phys. Rev. B 34 (1986) 5992.], the microscopic origin of the gap bowing is also elucidated. It is concluded that the energy band gap bowing is primarily due to chemical charge-transfer effect. Contribution of volume deformation and structural relaxation to the gap bowing parameter is found to be very small. Thermodynamic stability of MgxZn1−xO was also studied.</description><subject>Alloys</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Density functional theory</subject><subject>Electron density of states and band structure of crystalline solids</subject><subject>Electron states</subject><subject>Exact sciences and technology</subject><subject>FP-LAPW</subject><subject>Gap bowing</subject><subject>Inorganic compounds</subject><subject>MgxZn1 − xO</subject><subject>Physics</subject><subject>Semiconductor compounds</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of crystalline solids</subject><subject>Thermodynamic properties</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkL1u2zAQgIkiAeq4eYZqSaZK5ZG2RI6BkaYBXHhokiELQZ9OLg1JdEi5sd8gcx8xT1IaDtoxtxxw-O7vY-wz8AI4lF_XBfqus0NEVwjOywKg4Bw-sBGoSudccThhI65FlXMxLT-ysxjXCSi1EiP28HMIWxy2wbZfMmoJh-B7h5nt62z4RaHz9b63Xapsgt9QGBzFzDfZs6spWx6old1kP1a7xx5eX_7sFpltW7__xE4b20Y6f8tjdv_t-m72PZ8vbm5nV_McJxMx5I1AhEo1la5r0I2WUDYgdQVClZVWegliibRUoGiKUpWqrjgSSqGtmFrO5ZhdHuem6562FAfTuYjUtrYnv41G8hTTEhJYHUEMPsZAjdkE19mwN8DNwaNZm38ezcGjATBJU-q8eFthI9q2CbZHF_-3KyWlnIjEXR05Sv_-dhRMmkQ9Uu1C0mpq797d9RdEZI5M</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Amrani, B.</creator><creator>Ahmed, Rashid</creator><creator>El Haj Hassan, F.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070701</creationdate><title>Structural, electronic and thermodynamic properties of wide band gap MgxZn1−xO alloy</title><author>Amrani, B. ; Ahmed, Rashid ; El Haj Hassan, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-f2cc178f79dd19f9316f139712867989b12bceb818e5c3868d70cec329a25a003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Alloys</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Density functional theory</topic><topic>Electron density of states and band structure of crystalline solids</topic><topic>Electron states</topic><topic>Exact sciences and technology</topic><topic>FP-LAPW</topic><topic>Gap bowing</topic><topic>Inorganic compounds</topic><topic>MgxZn1 − xO</topic><topic>Physics</topic><topic>Semiconductor compounds</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of crystalline solids</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amrani, B.</creatorcontrib><creatorcontrib>Ahmed, Rashid</creatorcontrib><creatorcontrib>El Haj Hassan, F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amrani, B.</au><au>Ahmed, Rashid</au><au>El Haj Hassan, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural, electronic and thermodynamic properties of wide band gap MgxZn1−xO alloy</atitle><jtitle>Computational materials science</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>40</volume><issue>1</issue><spage>66</spage><epage>72</epage><pages>66-72</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>Structural, electronic and thermodynamic properties of a wide band gap semiconductor alloy MgxZn1−xO have been studied using ab initio method. Calculations have been made using full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). For exchange-correlation energy and corresponding potential, generalized gradient approximation (GGA) by Perdew–Burke–Ernzerhof (PBE) and Engel–Vosko (EV) have been used. We analyze composition effect on lattice constants, bulk modulus, band gap and effective mass of the electron. It is observed that bulk modulus and band gap depend non-linearly on alloy composition x, whereas lattice constants and cohesive energy follow Vegard’s law. Using the approach of Bernard and Zunger [J.E. Bernard, A. Zunger, Phys. Rev. B 34 (1986) 5992.], the microscopic origin of the gap bowing is also elucidated. It is concluded that the energy band gap bowing is primarily due to chemical charge-transfer effect. Contribution of volume deformation and structural relaxation to the gap bowing parameter is found to be very small. Thermodynamic stability of MgxZn1−xO was also studied.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2006.11.001</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0256 |
ispartof | Computational materials science, 2007-07, Vol.40 (1), p.66-72 |
issn | 0927-0256 1879-0801 |
language | eng |
recordid | cdi_proquest_miscellaneous_30000561 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Alloys Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Density functional theory Electron density of states and band structure of crystalline solids Electron states Exact sciences and technology FP-LAPW Gap bowing Inorganic compounds MgxZn1 − xO Physics Semiconductor compounds Structure of solids and liquids crystallography Structure of specific crystalline solids Thermal properties of condensed matter Thermal properties of crystalline solids Thermodynamic properties |
title | Structural, electronic and thermodynamic properties of wide band gap MgxZn1−xO alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A40%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural,%20electronic%20and%20thermodynamic%20properties%20of%20wide%20band%20gap%20MgxZn1%E2%88%92xO%20alloy&rft.jtitle=Computational%20materials%20science&rft.au=Amrani,%20B.&rft.date=2007-07-01&rft.volume=40&rft.issue=1&rft.spage=66&rft.epage=72&rft.pages=66-72&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2006.11.001&rft_dat=%3Cproquest_cross%3E30000561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30000561&rft_id=info:pmid/&rft_els_id=S092702560600317X&rfr_iscdi=true |