Effect of the marine environment on reinforced concrete durability in Iberoamerican countries: DURACON project/CYTED
This work presents some of the results from the project: “Effect of the environment on reinforcement durability” (DURACON) in its first two-years period, which investigates the influence of urban and marine meteorochemical parameters on the performance of reinforced concrete structures. The results...
Gespeichert in:
Veröffentlicht in: | Corrosion science 2007-07, Vol.49 (7), p.2832-2843 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2843 |
---|---|
container_issue | 7 |
container_start_page | 2832 |
container_title | Corrosion science |
container_volume | 49 |
creator | Trocónis de Rincón, O. Sánchez, M. Millano, V. Fernández, R. de Partidas, E.A. Andrade, C. Martínez, I. Castellote, M. Barboza, M. Irassar, F. Montenegro, J.C. Vera, R. Carvajal, A.M. de Gutiérrez, R.M. Maldonado, J. Guerrero, C. Saborio-Leiva, E. Villalobos, A.C. Tres-Calvo, G. Torres-Acosta, A. Pérez-Quiroz, J. Martínez-Madrid, M. Almeraya-Calderón, F. Castro-Borges, P. Moreno, E.I. Pérez-López, T. Salta, M. de Melo, A.P. Rodríguez, G. Pedrón, Miguel Derrégibus, M. |
description | This work presents some of the results from the project: “Effect of the environment on reinforcement durability” (DURACON) in its first two-years period, which investigates the influence of urban and marine meteorochemical parameters on the performance of reinforced concrete structures. The results presented in this investigation are from 21 marine test sites only (no urban environments are included), distributed among 11 countries (Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Mexico, Spain, Uruguay, Portugal and Venezuela). The environment was evaluated using ISO Standard 9223 and the concrete was characterized by measuring compressive strength, elastic modulus, total and effective porosity, chloride permeability according to ASTM standards, as well as the effective porosity and resistance to water absorption using the Fagerlund method. To that effect, concrete specimens (with and without reinforcement) were prepared for electrochemical and physical/mechanical/chemical tests using the existing materials in each participating country, following strict procedures which enabled the preparation of similar concrete samples. Two water/cement (w/c) ratios (0.45 and 0.65) were selected, where the concrete with 0.45 w/c ratio had to have a minimum cement content of 400
kg/m
3 and the one with 0.65 w/c ratio a compressive strength of 210
kg/cm
2. Type I Portland cement, siliceous sand, and crushed rock as coarse aggregates (13-mm maximum nominal size) were used. After a one-year exposure, the results of the corrosion potentiality and probability analysis of the reinforcement in the different test stations showed that, for marine atmospheres, the most aggressive environment to induce steel corrosion was at Portugal’s Cabo Raso station, and the least aggressive one was at Chile’s Valparaíso station. These results are comparable with the ones found using electrochemical measurements, after a two-year exposure. |
doi_str_mv | 10.1016/j.corsci.2007.02.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30000177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X07000327</els_id><sourcerecordid>30000177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-d2d559751adcac6de4b98ec824a8080a74ecd0a50e33cfc93261b9f2795ca96f3</originalsourceid><addsrcrecordid>eNqFkc1rFEEQxRtRcI3-Bx76oreZVH_MR3sQwmbVQDAgCeip6a2pxl5mu2P3bCD_vb1swJs5FVT96j14j7H3AloBoj_ftZhywdBKgKEF2QKYF2wlxsE0oE3_kq0ABDRGjT9fszel7ABA1s2KLRvvCReePF9-E9-7HCJxig8hp7inWC-RZwrRp4w0cUwRMy3Ep0N22zCH5ZGHyK-2lJPbUw7oYoUOccmByid-effjYn3znd_ntKs-5-tft5vLt-yVd3Ohd0_zjN192dyuvzXXN1-v1hfXDSqtl2aSU9eZoRNuQof9RHprRsJRajfCCG7QhBO4Dkgp9GiU7MXWeDmYDp3pvTpjH0-61f3Pgcpi96EgzbOLlA7FqhoDiGF4FpQ15q4buudBMEYLc1TUJxBzKiWTt_c51HQfrQB7LM3u7Kk0eyzNgrS1tPr24UnfFXSzzy5iKP9-x1FpqVTlPp84qvE9BMq2KlGsDYVcY7ZTCv83-gt_Sq_9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20994197</pqid></control><display><type>article</type><title>Effect of the marine environment on reinforced concrete durability in Iberoamerican countries: DURACON project/CYTED</title><source>Elsevier ScienceDirect Journals</source><creator>Trocónis de Rincón, O. ; Sánchez, M. ; Millano, V. ; Fernández, R. ; de Partidas, E.A. ; Andrade, C. ; Martínez, I. ; Castellote, M. ; Barboza, M. ; Irassar, F. ; Montenegro, J.C. ; Vera, R. ; Carvajal, A.M. ; de Gutiérrez, R.M. ; Maldonado, J. ; Guerrero, C. ; Saborio-Leiva, E. ; Villalobos, A.C. ; Tres-Calvo, G. ; Torres-Acosta, A. ; Pérez-Quiroz, J. ; Martínez-Madrid, M. ; Almeraya-Calderón, F. ; Castro-Borges, P. ; Moreno, E.I. ; Pérez-López, T. ; Salta, M. ; de Melo, A.P. ; Rodríguez, G. ; Pedrón, Miguel ; Derrégibus, M.</creator><creatorcontrib>Trocónis de Rincón, O. ; Sánchez, M. ; Millano, V. ; Fernández, R. ; de Partidas, E.A. ; Andrade, C. ; Martínez, I. ; Castellote, M. ; Barboza, M. ; Irassar, F. ; Montenegro, J.C. ; Vera, R. ; Carvajal, A.M. ; de Gutiérrez, R.M. ; Maldonado, J. ; Guerrero, C. ; Saborio-Leiva, E. ; Villalobos, A.C. ; Tres-Calvo, G. ; Torres-Acosta, A. ; Pérez-Quiroz, J. ; Martínez-Madrid, M. ; Almeraya-Calderón, F. ; Castro-Borges, P. ; Moreno, E.I. ; Pérez-López, T. ; Salta, M. ; de Melo, A.P. ; Rodríguez, G. ; Pedrón, Miguel ; Derrégibus, M.</creatorcontrib><description>This work presents some of the results from the project: “Effect of the environment on reinforcement durability” (DURACON) in its first two-years period, which investigates the influence of urban and marine meteorochemical parameters on the performance of reinforced concrete structures. The results presented in this investigation are from 21 marine test sites only (no urban environments are included), distributed among 11 countries (Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Mexico, Spain, Uruguay, Portugal and Venezuela). The environment was evaluated using ISO Standard 9223 and the concrete was characterized by measuring compressive strength, elastic modulus, total and effective porosity, chloride permeability according to ASTM standards, as well as the effective porosity and resistance to water absorption using the Fagerlund method. To that effect, concrete specimens (with and without reinforcement) were prepared for electrochemical and physical/mechanical/chemical tests using the existing materials in each participating country, following strict procedures which enabled the preparation of similar concrete samples. Two water/cement (w/c) ratios (0.45 and 0.65) were selected, where the concrete with 0.45 w/c ratio had to have a minimum cement content of 400
kg/m
3 and the one with 0.65 w/c ratio a compressive strength of 210
kg/cm
2. Type I Portland cement, siliceous sand, and crushed rock as coarse aggregates (13-mm maximum nominal size) were used. After a one-year exposure, the results of the corrosion potentiality and probability analysis of the reinforcement in the different test stations showed that, for marine atmospheres, the most aggressive environment to induce steel corrosion was at Portugal’s Cabo Raso station, and the least aggressive one was at Chile’s Valparaíso station. These results are comparable with the ones found using electrochemical measurements, after a two-year exposure.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2007.02.009</identifier><identifier>CODEN: CRRSAA</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>A. Reinforced concrete ; Applied sciences ; B. Environmental factors ; C. Atmospheric corrosion ; C. Chloride-ion diffusion ; Corrosion ; Corrosion environments ; Exact sciences and technology ; Marine ; Metals. Metallurgy</subject><ispartof>Corrosion science, 2007-07, Vol.49 (7), p.2832-2843</ispartof><rights>2007 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-d2d559751adcac6de4b98ec824a8080a74ecd0a50e33cfc93261b9f2795ca96f3</citedby><cites>FETCH-LOGICAL-c344t-d2d559751adcac6de4b98ec824a8080a74ecd0a50e33cfc93261b9f2795ca96f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010938X07000327$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18834233$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Trocónis de Rincón, O.</creatorcontrib><creatorcontrib>Sánchez, M.</creatorcontrib><creatorcontrib>Millano, V.</creatorcontrib><creatorcontrib>Fernández, R.</creatorcontrib><creatorcontrib>de Partidas, E.A.</creatorcontrib><creatorcontrib>Andrade, C.</creatorcontrib><creatorcontrib>Martínez, I.</creatorcontrib><creatorcontrib>Castellote, M.</creatorcontrib><creatorcontrib>Barboza, M.</creatorcontrib><creatorcontrib>Irassar, F.</creatorcontrib><creatorcontrib>Montenegro, J.C.</creatorcontrib><creatorcontrib>Vera, R.</creatorcontrib><creatorcontrib>Carvajal, A.M.</creatorcontrib><creatorcontrib>de Gutiérrez, R.M.</creatorcontrib><creatorcontrib>Maldonado, J.</creatorcontrib><creatorcontrib>Guerrero, C.</creatorcontrib><creatorcontrib>Saborio-Leiva, E.</creatorcontrib><creatorcontrib>Villalobos, A.C.</creatorcontrib><creatorcontrib>Tres-Calvo, G.</creatorcontrib><creatorcontrib>Torres-Acosta, A.</creatorcontrib><creatorcontrib>Pérez-Quiroz, J.</creatorcontrib><creatorcontrib>Martínez-Madrid, M.</creatorcontrib><creatorcontrib>Almeraya-Calderón, F.</creatorcontrib><creatorcontrib>Castro-Borges, P.</creatorcontrib><creatorcontrib>Moreno, E.I.</creatorcontrib><creatorcontrib>Pérez-López, T.</creatorcontrib><creatorcontrib>Salta, M.</creatorcontrib><creatorcontrib>de Melo, A.P.</creatorcontrib><creatorcontrib>Rodríguez, G.</creatorcontrib><creatorcontrib>Pedrón, Miguel</creatorcontrib><creatorcontrib>Derrégibus, M.</creatorcontrib><title>Effect of the marine environment on reinforced concrete durability in Iberoamerican countries: DURACON project/CYTED</title><title>Corrosion science</title><description>This work presents some of the results from the project: “Effect of the environment on reinforcement durability” (DURACON) in its first two-years period, which investigates the influence of urban and marine meteorochemical parameters on the performance of reinforced concrete structures. The results presented in this investigation are from 21 marine test sites only (no urban environments are included), distributed among 11 countries (Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Mexico, Spain, Uruguay, Portugal and Venezuela). The environment was evaluated using ISO Standard 9223 and the concrete was characterized by measuring compressive strength, elastic modulus, total and effective porosity, chloride permeability according to ASTM standards, as well as the effective porosity and resistance to water absorption using the Fagerlund method. To that effect, concrete specimens (with and without reinforcement) were prepared for electrochemical and physical/mechanical/chemical tests using the existing materials in each participating country, following strict procedures which enabled the preparation of similar concrete samples. Two water/cement (w/c) ratios (0.45 and 0.65) were selected, where the concrete with 0.45 w/c ratio had to have a minimum cement content of 400
kg/m
3 and the one with 0.65 w/c ratio a compressive strength of 210
kg/cm
2. Type I Portland cement, siliceous sand, and crushed rock as coarse aggregates (13-mm maximum nominal size) were used. After a one-year exposure, the results of the corrosion potentiality and probability analysis of the reinforcement in the different test stations showed that, for marine atmospheres, the most aggressive environment to induce steel corrosion was at Portugal’s Cabo Raso station, and the least aggressive one was at Chile’s Valparaíso station. These results are comparable with the ones found using electrochemical measurements, after a two-year exposure.</description><subject>A. Reinforced concrete</subject><subject>Applied sciences</subject><subject>B. Environmental factors</subject><subject>C. Atmospheric corrosion</subject><subject>C. Chloride-ion diffusion</subject><subject>Corrosion</subject><subject>Corrosion environments</subject><subject>Exact sciences and technology</subject><subject>Marine</subject><subject>Metals. Metallurgy</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkc1rFEEQxRtRcI3-Bx76oreZVH_MR3sQwmbVQDAgCeip6a2pxl5mu2P3bCD_vb1swJs5FVT96j14j7H3AloBoj_ftZhywdBKgKEF2QKYF2wlxsE0oE3_kq0ABDRGjT9fszel7ABA1s2KLRvvCReePF9-E9-7HCJxig8hp7inWC-RZwrRp4w0cUwRMy3Ep0N22zCH5ZGHyK-2lJPbUw7oYoUOccmByid-effjYn3znd_ntKs-5-tft5vLt-yVd3Ohd0_zjN192dyuvzXXN1-v1hfXDSqtl2aSU9eZoRNuQof9RHprRsJRajfCCG7QhBO4Dkgp9GiU7MXWeDmYDp3pvTpjH0-61f3Pgcpi96EgzbOLlA7FqhoDiGF4FpQ15q4buudBMEYLc1TUJxBzKiWTt_c51HQfrQB7LM3u7Kk0eyzNgrS1tPr24UnfFXSzzy5iKP9-x1FpqVTlPp84qvE9BMq2KlGsDYVcY7ZTCv83-gt_Sq_9</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Trocónis de Rincón, O.</creator><creator>Sánchez, M.</creator><creator>Millano, V.</creator><creator>Fernández, R.</creator><creator>de Partidas, E.A.</creator><creator>Andrade, C.</creator><creator>Martínez, I.</creator><creator>Castellote, M.</creator><creator>Barboza, M.</creator><creator>Irassar, F.</creator><creator>Montenegro, J.C.</creator><creator>Vera, R.</creator><creator>Carvajal, A.M.</creator><creator>de Gutiérrez, R.M.</creator><creator>Maldonado, J.</creator><creator>Guerrero, C.</creator><creator>Saborio-Leiva, E.</creator><creator>Villalobos, A.C.</creator><creator>Tres-Calvo, G.</creator><creator>Torres-Acosta, A.</creator><creator>Pérez-Quiroz, J.</creator><creator>Martínez-Madrid, M.</creator><creator>Almeraya-Calderón, F.</creator><creator>Castro-Borges, P.</creator><creator>Moreno, E.I.</creator><creator>Pérez-López, T.</creator><creator>Salta, M.</creator><creator>de Melo, A.P.</creator><creator>Rodríguez, G.</creator><creator>Pedrón, Miguel</creator><creator>Derrégibus, M.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20070701</creationdate><title>Effect of the marine environment on reinforced concrete durability in Iberoamerican countries: DURACON project/CYTED</title><author>Trocónis de Rincón, O. ; Sánchez, M. ; Millano, V. ; Fernández, R. ; de Partidas, E.A. ; Andrade, C. ; Martínez, I. ; Castellote, M. ; Barboza, M. ; Irassar, F. ; Montenegro, J.C. ; Vera, R. ; Carvajal, A.M. ; de Gutiérrez, R.M. ; Maldonado, J. ; Guerrero, C. ; Saborio-Leiva, E. ; Villalobos, A.C. ; Tres-Calvo, G. ; Torres-Acosta, A. ; Pérez-Quiroz, J. ; Martínez-Madrid, M. ; Almeraya-Calderón, F. ; Castro-Borges, P. ; Moreno, E.I. ; Pérez-López, T. ; Salta, M. ; de Melo, A.P. ; Rodríguez, G. ; Pedrón, Miguel ; Derrégibus, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-d2d559751adcac6de4b98ec824a8080a74ecd0a50e33cfc93261b9f2795ca96f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>A. Reinforced concrete</topic><topic>Applied sciences</topic><topic>B. Environmental factors</topic><topic>C. Atmospheric corrosion</topic><topic>C. Chloride-ion diffusion</topic><topic>Corrosion</topic><topic>Corrosion environments</topic><topic>Exact sciences and technology</topic><topic>Marine</topic><topic>Metals. Metallurgy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trocónis de Rincón, O.</creatorcontrib><creatorcontrib>Sánchez, M.</creatorcontrib><creatorcontrib>Millano, V.</creatorcontrib><creatorcontrib>Fernández, R.</creatorcontrib><creatorcontrib>de Partidas, E.A.</creatorcontrib><creatorcontrib>Andrade, C.</creatorcontrib><creatorcontrib>Martínez, I.</creatorcontrib><creatorcontrib>Castellote, M.</creatorcontrib><creatorcontrib>Barboza, M.</creatorcontrib><creatorcontrib>Irassar, F.</creatorcontrib><creatorcontrib>Montenegro, J.C.</creatorcontrib><creatorcontrib>Vera, R.</creatorcontrib><creatorcontrib>Carvajal, A.M.</creatorcontrib><creatorcontrib>de Gutiérrez, R.M.</creatorcontrib><creatorcontrib>Maldonado, J.</creatorcontrib><creatorcontrib>Guerrero, C.</creatorcontrib><creatorcontrib>Saborio-Leiva, E.</creatorcontrib><creatorcontrib>Villalobos, A.C.</creatorcontrib><creatorcontrib>Tres-Calvo, G.</creatorcontrib><creatorcontrib>Torres-Acosta, A.</creatorcontrib><creatorcontrib>Pérez-Quiroz, J.</creatorcontrib><creatorcontrib>Martínez-Madrid, M.</creatorcontrib><creatorcontrib>Almeraya-Calderón, F.</creatorcontrib><creatorcontrib>Castro-Borges, P.</creatorcontrib><creatorcontrib>Moreno, E.I.</creatorcontrib><creatorcontrib>Pérez-López, T.</creatorcontrib><creatorcontrib>Salta, M.</creatorcontrib><creatorcontrib>de Melo, A.P.</creatorcontrib><creatorcontrib>Rodríguez, G.</creatorcontrib><creatorcontrib>Pedrón, Miguel</creatorcontrib><creatorcontrib>Derrégibus, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trocónis de Rincón, O.</au><au>Sánchez, M.</au><au>Millano, V.</au><au>Fernández, R.</au><au>de Partidas, E.A.</au><au>Andrade, C.</au><au>Martínez, I.</au><au>Castellote, M.</au><au>Barboza, M.</au><au>Irassar, F.</au><au>Montenegro, J.C.</au><au>Vera, R.</au><au>Carvajal, A.M.</au><au>de Gutiérrez, R.M.</au><au>Maldonado, J.</au><au>Guerrero, C.</au><au>Saborio-Leiva, E.</au><au>Villalobos, A.C.</au><au>Tres-Calvo, G.</au><au>Torres-Acosta, A.</au><au>Pérez-Quiroz, J.</au><au>Martínez-Madrid, M.</au><au>Almeraya-Calderón, F.</au><au>Castro-Borges, P.</au><au>Moreno, E.I.</au><au>Pérez-López, T.</au><au>Salta, M.</au><au>de Melo, A.P.</au><au>Rodríguez, G.</au><au>Pedrón, Miguel</au><au>Derrégibus, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of the marine environment on reinforced concrete durability in Iberoamerican countries: DURACON project/CYTED</atitle><jtitle>Corrosion science</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>49</volume><issue>7</issue><spage>2832</spage><epage>2843</epage><pages>2832-2843</pages><issn>0010-938X</issn><eissn>1879-0496</eissn><coden>CRRSAA</coden><abstract>This work presents some of the results from the project: “Effect of the environment on reinforcement durability” (DURACON) in its first two-years period, which investigates the influence of urban and marine meteorochemical parameters on the performance of reinforced concrete structures. The results presented in this investigation are from 21 marine test sites only (no urban environments are included), distributed among 11 countries (Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Mexico, Spain, Uruguay, Portugal and Venezuela). The environment was evaluated using ISO Standard 9223 and the concrete was characterized by measuring compressive strength, elastic modulus, total and effective porosity, chloride permeability according to ASTM standards, as well as the effective porosity and resistance to water absorption using the Fagerlund method. To that effect, concrete specimens (with and without reinforcement) were prepared for electrochemical and physical/mechanical/chemical tests using the existing materials in each participating country, following strict procedures which enabled the preparation of similar concrete samples. Two water/cement (w/c) ratios (0.45 and 0.65) were selected, where the concrete with 0.45 w/c ratio had to have a minimum cement content of 400
kg/m
3 and the one with 0.65 w/c ratio a compressive strength of 210
kg/cm
2. Type I Portland cement, siliceous sand, and crushed rock as coarse aggregates (13-mm maximum nominal size) were used. After a one-year exposure, the results of the corrosion potentiality and probability analysis of the reinforcement in the different test stations showed that, for marine atmospheres, the most aggressive environment to induce steel corrosion was at Portugal’s Cabo Raso station, and the least aggressive one was at Chile’s Valparaíso station. These results are comparable with the ones found using electrochemical measurements, after a two-year exposure.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2007.02.009</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-938X |
ispartof | Corrosion science, 2007-07, Vol.49 (7), p.2832-2843 |
issn | 0010-938X 1879-0496 |
language | eng |
recordid | cdi_proquest_miscellaneous_30000177 |
source | Elsevier ScienceDirect Journals |
subjects | A. Reinforced concrete Applied sciences B. Environmental factors C. Atmospheric corrosion C. Chloride-ion diffusion Corrosion Corrosion environments Exact sciences and technology Marine Metals. Metallurgy |
title | Effect of the marine environment on reinforced concrete durability in Iberoamerican countries: DURACON project/CYTED |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20the%20marine%20environment%20on%20reinforced%20concrete%20durability%20in%20Iberoamerican%20countries:%20DURACON%20project/CYTED&rft.jtitle=Corrosion%20science&rft.au=Troc%C3%B3nis%20de%20Rinc%C3%B3n,%20O.&rft.date=2007-07-01&rft.volume=49&rft.issue=7&rft.spage=2832&rft.epage=2843&rft.pages=2832-2843&rft.issn=0010-938X&rft.eissn=1879-0496&rft.coden=CRRSAA&rft_id=info:doi/10.1016/j.corsci.2007.02.009&rft_dat=%3Cproquest_cross%3E30000177%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20994197&rft_id=info:pmid/&rft_els_id=S0010938X07000327&rfr_iscdi=true |