Surface finish quality characterisation of machined workpieces using fractal analysis

Characterisation of surface finishes of machined components and parts in machining operations is becoming more important as the world tends towards globalisation and competitiveness. Companies are choosing new technologies to improve on the surface finish of components and parts. A new method of fra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanika (Kaunas, Lithuania : 1995) Lithuania : 1995), 2007-01, Vol.64 (2), p.65-70
Hauptverfasser: Alabi, B, Salau, T A O, Oke, S A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue 2
container_start_page 65
container_title Mechanika (Kaunas, Lithuania : 1995)
container_volume 64
creator Alabi, B
Salau, T A O
Oke, S A
description Characterisation of surface finishes of machined components and parts in machining operations is becoming more important as the world tends towards globalisation and competitiveness. Companies are choosing new technologies to improve on the surface finish of components and parts. A new method of fractal characterisation of the spectral trace of machined surfaces is investigated in this work. Fractals have been used to describe and quantify irregular fragments or complex shapes of materials such as shore-line, clouds, plants, brain cells, gold colloids, and sponge iron [1, 2]. Fractal analysis has also been used to study structural and mechanical attributes of some food products [3]. Kerdpiboon et al. [3] use artificial neural network analysis to predict shrinkage and rehydration of dried carrots, based on the inputs of moisture content and normalised fractal dimension analysis of the cell wall structure. Measured values of shrinkage and rehydration were predicted with an R2 > 0.95 for the entire test samples.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_29997758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29997758</sourcerecordid><originalsourceid>FETCH-LOGICAL-p186t-474dde201b2335d5c2bb0c48b82f9e75dc9efc0725f97058725af5750099d70e3</originalsourceid><addsrcrecordid>eNotjD1PwzAUAD2ARCn8B09skRwnxvaIKr6kSgzQuXqxn4nBtdM8R6j_HhBMd8Ppztiq7axsWin0Bbsk-hBCKWnaFdu9LnMAhzzEHGnkxwVSrCfuRpjBVZwjQY0l8xL4AdwYM3r-VebPKaJD4gvF_M7DbwuJQ4Z0okhX7DxAIrz-55rtHu7fNk_N9uXxeXO3babW3Nam1733KEU7yK5TXjk5DML1ZjAyWNTKO4vBCS1VsFoo8yMQlFZCWOu1wG7Nbv6-01yOC1LdHyI5TAkyloX20lqrtTLdN9saTpY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29997758</pqid></control><display><type>article</type><title>Surface finish quality characterisation of machined workpieces using fractal analysis</title><source>DOAJ Directory of Open Access Journals</source><creator>Alabi, B ; Salau, T A O ; Oke, S A</creator><creatorcontrib>Alabi, B ; Salau, T A O ; Oke, S A</creatorcontrib><description>Characterisation of surface finishes of machined components and parts in machining operations is becoming more important as the world tends towards globalisation and competitiveness. Companies are choosing new technologies to improve on the surface finish of components and parts. A new method of fractal characterisation of the spectral trace of machined surfaces is investigated in this work. Fractals have been used to describe and quantify irregular fragments or complex shapes of materials such as shore-line, clouds, plants, brain cells, gold colloids, and sponge iron [1, 2]. Fractal analysis has also been used to study structural and mechanical attributes of some food products [3]. Kerdpiboon et al. [3] use artificial neural network analysis to predict shrinkage and rehydration of dried carrots, based on the inputs of moisture content and normalised fractal dimension analysis of the cell wall structure. Measured values of shrinkage and rehydration were predicted with an R2 &gt; 0.95 for the entire test samples.</description><identifier>ISSN: 1392-1207</identifier><language>eng</language><ispartof>Mechanika (Kaunas, Lithuania : 1995), 2007-01, Vol.64 (2), p.65-70</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Alabi, B</creatorcontrib><creatorcontrib>Salau, T A O</creatorcontrib><creatorcontrib>Oke, S A</creatorcontrib><title>Surface finish quality characterisation of machined workpieces using fractal analysis</title><title>Mechanika (Kaunas, Lithuania : 1995)</title><description>Characterisation of surface finishes of machined components and parts in machining operations is becoming more important as the world tends towards globalisation and competitiveness. Companies are choosing new technologies to improve on the surface finish of components and parts. A new method of fractal characterisation of the spectral trace of machined surfaces is investigated in this work. Fractals have been used to describe and quantify irregular fragments or complex shapes of materials such as shore-line, clouds, plants, brain cells, gold colloids, and sponge iron [1, 2]. Fractal analysis has also been used to study structural and mechanical attributes of some food products [3]. Kerdpiboon et al. [3] use artificial neural network analysis to predict shrinkage and rehydration of dried carrots, based on the inputs of moisture content and normalised fractal dimension analysis of the cell wall structure. Measured values of shrinkage and rehydration were predicted with an R2 &gt; 0.95 for the entire test samples.</description><issn>1392-1207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNotjD1PwzAUAD2ARCn8B09skRwnxvaIKr6kSgzQuXqxn4nBtdM8R6j_HhBMd8Ppztiq7axsWin0Bbsk-hBCKWnaFdu9LnMAhzzEHGnkxwVSrCfuRpjBVZwjQY0l8xL4AdwYM3r-VebPKaJD4gvF_M7DbwuJQ4Z0okhX7DxAIrz-55rtHu7fNk_N9uXxeXO3babW3Nam1733KEU7yK5TXjk5DML1ZjAyWNTKO4vBCS1VsFoo8yMQlFZCWOu1wG7Nbv6-01yOC1LdHyI5TAkyloX20lqrtTLdN9saTpY</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Alabi, B</creator><creator>Salau, T A O</creator><creator>Oke, S A</creator><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20070101</creationdate><title>Surface finish quality characterisation of machined workpieces using fractal analysis</title><author>Alabi, B ; Salau, T A O ; Oke, S A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p186t-474dde201b2335d5c2bb0c48b82f9e75dc9efc0725f97058725af5750099d70e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alabi, B</creatorcontrib><creatorcontrib>Salau, T A O</creatorcontrib><creatorcontrib>Oke, S A</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mechanika (Kaunas, Lithuania : 1995)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alabi, B</au><au>Salau, T A O</au><au>Oke, S A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface finish quality characterisation of machined workpieces using fractal analysis</atitle><jtitle>Mechanika (Kaunas, Lithuania : 1995)</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>64</volume><issue>2</issue><spage>65</spage><epage>70</epage><pages>65-70</pages><issn>1392-1207</issn><abstract>Characterisation of surface finishes of machined components and parts in machining operations is becoming more important as the world tends towards globalisation and competitiveness. Companies are choosing new technologies to improve on the surface finish of components and parts. A new method of fractal characterisation of the spectral trace of machined surfaces is investigated in this work. Fractals have been used to describe and quantify irregular fragments or complex shapes of materials such as shore-line, clouds, plants, brain cells, gold colloids, and sponge iron [1, 2]. Fractal analysis has also been used to study structural and mechanical attributes of some food products [3]. Kerdpiboon et al. [3] use artificial neural network analysis to predict shrinkage and rehydration of dried carrots, based on the inputs of moisture content and normalised fractal dimension analysis of the cell wall structure. Measured values of shrinkage and rehydration were predicted with an R2 &gt; 0.95 for the entire test samples.</abstract><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1392-1207
ispartof Mechanika (Kaunas, Lithuania : 1995), 2007-01, Vol.64 (2), p.65-70
issn 1392-1207
language eng
recordid cdi_proquest_miscellaneous_29997758
source DOAJ Directory of Open Access Journals
title Surface finish quality characterisation of machined workpieces using fractal analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20finish%20quality%20characterisation%20of%20machined%20workpieces%20using%20fractal%20analysis&rft.jtitle=Mechanika%20(Kaunas,%20Lithuania%20:%201995)&rft.au=Alabi,%20B&rft.date=2007-01-01&rft.volume=64&rft.issue=2&rft.spage=65&rft.epage=70&rft.pages=65-70&rft.issn=1392-1207&rft_id=info:doi/&rft_dat=%3Cproquest%3E29997758%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29997758&rft_id=info:pmid/&rfr_iscdi=true