Statistical model for characterizing random microstructure of inclusion-matrix composites

The variation of arrangement of micro-structural entities (i.e. inclusions) influences local properties of composites. Thus, there is a need to classify and quantify different micro-structural arrangements. In other words, it is necessary to identify descriptors that characterize the spatial dispers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2007-08, Vol.42 (16), p.7016-7030
Hauptverfasser: AL-OSTAZ, Ahmed, DIWAKAR, Anipindi, ALZEBDEH, Khalid I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7030
container_issue 16
container_start_page 7016
container_title Journal of materials science
container_volume 42
creator AL-OSTAZ, Ahmed
DIWAKAR, Anipindi
ALZEBDEH, Khalid I
description The variation of arrangement of micro-structural entities (i.e. inclusions) influences local properties of composites. Thus, there is a need to classify and quantify different micro-structural arrangements. In other words, it is necessary to identify descriptors that characterize the spatial dispersion of inclusions in random composites. On the other hand, Delaunay triangulation associated with an arbitrary set of points in a plane is unique which makes it a good candidate for generating such descriptors. This paper presents a framework for establishing a methodology for characterizing microstructure morphology in random composites and correlating that to local stress field. More specifically, in this paper we address three main issues: correlating microstructure morphology to local stress fields, effect of clustering of inclusions on statistical descriptors identified in the paper, and effect of number of realizations of statistical volume elements (SVEs) on statistical descriptors.
doi_str_mv 10.1007/s10853-006-1117-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29984698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082191988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-fa7b28e5f6d3188657af56517e46705cb88f12691ad7b4ff27551c004b76d9373</originalsourceid><addsrcrecordid>eNp9kT1rHDEURUVIwJtNfoC7AZOQRraeZvRVmsWxDQYXtotUQqORYi0zo42kATu_Plp2wZDC1WvOvfDORegUyDkQIi4yEMlaTAjHACAwfEArYKLFnSTtR7QihFJMOw4n6HPOW0IIExRW6NdDMSXkEqwZmykObmx8TI19NsnY4lL4G-bfTTLzEKdmCjbFXNJiy5JcE30TZjsuOcQZT6ak8NLYOO1iDsXlL-iTN2N2X493jZ5-Xj1ubvDd_fXt5vIO25aLgr0RPZWOeT60ICVnwnjGGQjXcUGY7aX0QLkCM4i-854KxsAS0vWCD6oV7Rp9P_TuUvyzuFz0FLJ142hmF5esqVKy40pW8Me7YDVIQYGSe_TsP3QblzTXNzSlTAkqq79KwYHaW8nJeb1LYTLptVbp_Sr6sIquq-j9Khpq5tux2eSq3FezNuS3oFSUSiHbf6LSjLs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259728005</pqid></control><display><type>article</type><title>Statistical model for characterizing random microstructure of inclusion-matrix composites</title><source>SpringerLink Journals - AutoHoldings</source><creator>AL-OSTAZ, Ahmed ; DIWAKAR, Anipindi ; ALZEBDEH, Khalid I</creator><creatorcontrib>AL-OSTAZ, Ahmed ; DIWAKAR, Anipindi ; ALZEBDEH, Khalid I</creatorcontrib><description>The variation of arrangement of micro-structural entities (i.e. inclusions) influences local properties of composites. Thus, there is a need to classify and quantify different micro-structural arrangements. In other words, it is necessary to identify descriptors that characterize the spatial dispersion of inclusions in random composites. On the other hand, Delaunay triangulation associated with an arbitrary set of points in a plane is unique which makes it a good candidate for generating such descriptors. This paper presents a framework for establishing a methodology for characterizing microstructure morphology in random composites and correlating that to local stress field. More specifically, in this paper we address three main issues: correlating microstructure morphology to local stress fields, effect of clustering of inclusions on statistical descriptors identified in the paper, and effect of number of realizations of statistical volume elements (SVEs) on statistical descriptors.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-006-1117-1</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Classification ; Clustering ; Composite materials ; Condensed matter: structure, mechanical and thermal properties ; Correlation ; Defects and impurities in crystals; microstructure ; Delaunay triangulation ; Dispersions ; Exact sciences and technology ; Inclusions ; Materials science ; Mathematical models ; Microstructure ; Morphology ; Physics ; Statistical models ; Stress distribution ; Stresses ; Structure of solids and liquids; crystallography ; Theories and models of crystal defects</subject><ispartof>Journal of materials science, 2007-08, Vol.42 (16), p.7016-7030</ispartof><rights>2007 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2007). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-fa7b28e5f6d3188657af56517e46705cb88f12691ad7b4ff27551c004b76d9373</citedby><cites>FETCH-LOGICAL-c367t-fa7b28e5f6d3188657af56517e46705cb88f12691ad7b4ff27551c004b76d9373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18922878$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>AL-OSTAZ, Ahmed</creatorcontrib><creatorcontrib>DIWAKAR, Anipindi</creatorcontrib><creatorcontrib>ALZEBDEH, Khalid I</creatorcontrib><title>Statistical model for characterizing random microstructure of inclusion-matrix composites</title><title>Journal of materials science</title><description>The variation of arrangement of micro-structural entities (i.e. inclusions) influences local properties of composites. Thus, there is a need to classify and quantify different micro-structural arrangements. In other words, it is necessary to identify descriptors that characterize the spatial dispersion of inclusions in random composites. On the other hand, Delaunay triangulation associated with an arbitrary set of points in a plane is unique which makes it a good candidate for generating such descriptors. This paper presents a framework for establishing a methodology for characterizing microstructure morphology in random composites and correlating that to local stress field. More specifically, in this paper we address three main issues: correlating microstructure morphology to local stress fields, effect of clustering of inclusions on statistical descriptors identified in the paper, and effect of number of realizations of statistical volume elements (SVEs) on statistical descriptors.</description><subject>Classification</subject><subject>Clustering</subject><subject>Composite materials</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Correlation</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>Delaunay triangulation</subject><subject>Dispersions</subject><subject>Exact sciences and technology</subject><subject>Inclusions</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Physics</subject><subject>Statistical models</subject><subject>Stress distribution</subject><subject>Stresses</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Theories and models of crystal defects</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kT1rHDEURUVIwJtNfoC7AZOQRraeZvRVmsWxDQYXtotUQqORYi0zo42kATu_Plp2wZDC1WvOvfDORegUyDkQIi4yEMlaTAjHACAwfEArYKLFnSTtR7QihFJMOw4n6HPOW0IIExRW6NdDMSXkEqwZmykObmx8TI19NsnY4lL4G-bfTTLzEKdmCjbFXNJiy5JcE30TZjsuOcQZT6ak8NLYOO1iDsXlL-iTN2N2X493jZ5-Xj1ubvDd_fXt5vIO25aLgr0RPZWOeT60ICVnwnjGGQjXcUGY7aX0QLkCM4i-854KxsAS0vWCD6oV7Rp9P_TuUvyzuFz0FLJ142hmF5esqVKy40pW8Me7YDVIQYGSe_TsP3QblzTXNzSlTAkqq79KwYHaW8nJeb1LYTLptVbp_Sr6sIquq-j9Khpq5tux2eSq3FezNuS3oFSUSiHbf6LSjLs</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>AL-OSTAZ, Ahmed</creator><creator>DIWAKAR, Anipindi</creator><creator>ALZEBDEH, Khalid I</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20070801</creationdate><title>Statistical model for characterizing random microstructure of inclusion-matrix composites</title><author>AL-OSTAZ, Ahmed ; DIWAKAR, Anipindi ; ALZEBDEH, Khalid I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-fa7b28e5f6d3188657af56517e46705cb88f12691ad7b4ff27551c004b76d9373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Classification</topic><topic>Clustering</topic><topic>Composite materials</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Correlation</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>Delaunay triangulation</topic><topic>Dispersions</topic><topic>Exact sciences and technology</topic><topic>Inclusions</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Physics</topic><topic>Statistical models</topic><topic>Stress distribution</topic><topic>Stresses</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Theories and models of crystal defects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AL-OSTAZ, Ahmed</creatorcontrib><creatorcontrib>DIWAKAR, Anipindi</creatorcontrib><creatorcontrib>ALZEBDEH, Khalid I</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AL-OSTAZ, Ahmed</au><au>DIWAKAR, Anipindi</au><au>ALZEBDEH, Khalid I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical model for characterizing random microstructure of inclusion-matrix composites</atitle><jtitle>Journal of materials science</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>42</volume><issue>16</issue><spage>7016</spage><epage>7030</epage><pages>7016-7030</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>The variation of arrangement of micro-structural entities (i.e. inclusions) influences local properties of composites. Thus, there is a need to classify and quantify different micro-structural arrangements. In other words, it is necessary to identify descriptors that characterize the spatial dispersion of inclusions in random composites. On the other hand, Delaunay triangulation associated with an arbitrary set of points in a plane is unique which makes it a good candidate for generating such descriptors. This paper presents a framework for establishing a methodology for characterizing microstructure morphology in random composites and correlating that to local stress field. More specifically, in this paper we address three main issues: correlating microstructure morphology to local stress fields, effect of clustering of inclusions on statistical descriptors identified in the paper, and effect of number of realizations of statistical volume elements (SVEs) on statistical descriptors.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10853-006-1117-1</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2007-08, Vol.42 (16), p.7016-7030
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_29984698
source SpringerLink Journals - AutoHoldings
subjects Classification
Clustering
Composite materials
Condensed matter: structure, mechanical and thermal properties
Correlation
Defects and impurities in crystals
microstructure
Delaunay triangulation
Dispersions
Exact sciences and technology
Inclusions
Materials science
Mathematical models
Microstructure
Morphology
Physics
Statistical models
Stress distribution
Stresses
Structure of solids and liquids
crystallography
Theories and models of crystal defects
title Statistical model for characterizing random microstructure of inclusion-matrix composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20model%20for%20characterizing%20random%20microstructure%20of%20inclusion-matrix%20composites&rft.jtitle=Journal%20of%20materials%20science&rft.au=AL-OSTAZ,%20Ahmed&rft.date=2007-08-01&rft.volume=42&rft.issue=16&rft.spage=7016&rft.epage=7030&rft.pages=7016-7030&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1007/s10853-006-1117-1&rft_dat=%3Cproquest_cross%3E1082191988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259728005&rft_id=info:pmid/&rfr_iscdi=true