Buckling analysis of cylindrical shells with cutouts including random boundary and geometric imperfections

In this paper, the effect of random geometric imperfections on the critical load of isotropic, thin-walled, cylindrical shells under axial compression with rectangular cutouts is presented. Second moment characteristics of geometric imperfections are estimated by data of available measurements, a si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2007-07, Vol.196 (35), p.3424-3434
Hauptverfasser: Schenk, C.A., Schuëller, G.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3434
container_issue 35
container_start_page 3424
container_title Computer methods in applied mechanics and engineering
container_volume 196
creator Schenk, C.A.
Schuëller, G.I.
description In this paper, the effect of random geometric imperfections on the critical load of isotropic, thin-walled, cylindrical shells under axial compression with rectangular cutouts is presented. Second moment characteristics of geometric imperfections are estimated by data of available measurements, a simulation procedure based on the Karhunen–Loève expansion is applied for generating realizations of geometric imperfections. Nonlinear static finite-element analyses are carried out for the calculation of the response statistics of the critical load of the cylindrical shells. Cumulative distribution functions of the critical load as obtained by direct Monte Carlo simulation are presented. Furthermore, the individual and combined effects of random boundary and geometric imperfections on the limit loads of isotropic, thin-walled, cylindrical shells under axial compression are also treated. Again, second moment characteristics of these imperfections are estimated by data of available measurements of imperfections, a simulation procedure also based on the Karhunen–Loève expansion is applied for generating realizations of both boundary and geometric imperfections. A nonlinear static finite-element analysis using the general purpose code STAGS [C.C. Rankin, F.A. Brogan, W.A. Loden, H.D. Cabiness. STAGS (STructural Analysis of General Shells) User Manual, LMSC P032594, Version 3.0. Lockheed Martin Missiles and Space Co., Inc., Palo Alto, CA, USA, 1998] is carried out for the calculation of the buckling response of the cylindrical shells. Finally, the cumulative distribution functions of the limit load using direct Monte Carlo simulation are shown.
doi_str_mv 10.1016/j.cma.2007.03.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29980742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004578250700148X</els_id><sourcerecordid>29980742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-de7c7cfe9feccb04204a4d8e657892a7229a46205c3e50c5617330252e4c16ed3</originalsourceid><addsrcrecordid>eNp9kE1v1DAURS1EJYaWH8DOG9glPNtx7IgVVOVDqsSGri33-aX1kMSDnVDNv8ejqcQObyxZ91zrHsbeCmgFiP7DvsXZtxLAtKBaEN0LthPWDI0Uyr5kO4BON8ZK_Yq9LmUP9Vghd2z_ecNfU1weuF_8dCyx8DRyPNankCP6iZdHmqbCn-L6yHFb07YWHhectnCisl9Cmvl92pbg87G2BP5Aaaa10jzOB8oj4RrTUq7YxeinQm-e70t29-Xm5_W35vbH1-_Xn24bVNquTSCDBkcaKof30EnofBcs9drYQXoj5eC7XoJGRRpQ98IoBVJL6lD0FNQle3_uPeT0e6OyujkWrCP8QmkrTg6DBdPJGhTnIOZUSqbRHXKc6wonwJ2sur2rVt3JqgPlqtXKvHsu96XaGet-jOUfaG2vNOia-3jOUV36J1J2BSMtSCHm6sOFFP_zy19FTY7Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29980742</pqid></control><display><type>article</type><title>Buckling analysis of cylindrical shells with cutouts including random boundary and geometric imperfections</title><source>Access via ScienceDirect (Elsevier)</source><creator>Schenk, C.A. ; Schuëller, G.I.</creator><creatorcontrib>Schenk, C.A. ; Schuëller, G.I.</creatorcontrib><description>In this paper, the effect of random geometric imperfections on the critical load of isotropic, thin-walled, cylindrical shells under axial compression with rectangular cutouts is presented. Second moment characteristics of geometric imperfections are estimated by data of available measurements, a simulation procedure based on the Karhunen–Loève expansion is applied for generating realizations of geometric imperfections. Nonlinear static finite-element analyses are carried out for the calculation of the response statistics of the critical load of the cylindrical shells. Cumulative distribution functions of the critical load as obtained by direct Monte Carlo simulation are presented. Furthermore, the individual and combined effects of random boundary and geometric imperfections on the limit loads of isotropic, thin-walled, cylindrical shells under axial compression are also treated. Again, second moment characteristics of these imperfections are estimated by data of available measurements of imperfections, a simulation procedure also based on the Karhunen–Loève expansion is applied for generating realizations of both boundary and geometric imperfections. A nonlinear static finite-element analysis using the general purpose code STAGS [C.C. Rankin, F.A. Brogan, W.A. Loden, H.D. Cabiness. STAGS (STructural Analysis of General Shells) User Manual, LMSC P032594, Version 3.0. Lockheed Martin Missiles and Space Co., Inc., Palo Alto, CA, USA, 1998] is carried out for the calculation of the buckling response of the cylindrical shells. Finally, the cumulative distribution functions of the limit load using direct Monte Carlo simulation are shown.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2007.03.014</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Buckling ; Buckling analysis ; Computational techniques ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Karhunen–Loève expansion ; Mathematical methods in physics ; Monte Carlo simulation ; Physics ; Random geometric and boundary imperfections ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>Computer methods in applied mechanics and engineering, 2007-07, Vol.196 (35), p.3424-3434</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-de7c7cfe9feccb04204a4d8e657892a7229a46205c3e50c5617330252e4c16ed3</citedby><cites>FETCH-LOGICAL-c358t-de7c7cfe9feccb04204a4d8e657892a7229a46205c3e50c5617330252e4c16ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2007.03.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18863505$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schenk, C.A.</creatorcontrib><creatorcontrib>Schuëller, G.I.</creatorcontrib><title>Buckling analysis of cylindrical shells with cutouts including random boundary and geometric imperfections</title><title>Computer methods in applied mechanics and engineering</title><description>In this paper, the effect of random geometric imperfections on the critical load of isotropic, thin-walled, cylindrical shells under axial compression with rectangular cutouts is presented. Second moment characteristics of geometric imperfections are estimated by data of available measurements, a simulation procedure based on the Karhunen–Loève expansion is applied for generating realizations of geometric imperfections. Nonlinear static finite-element analyses are carried out for the calculation of the response statistics of the critical load of the cylindrical shells. Cumulative distribution functions of the critical load as obtained by direct Monte Carlo simulation are presented. Furthermore, the individual and combined effects of random boundary and geometric imperfections on the limit loads of isotropic, thin-walled, cylindrical shells under axial compression are also treated. Again, second moment characteristics of these imperfections are estimated by data of available measurements of imperfections, a simulation procedure also based on the Karhunen–Loève expansion is applied for generating realizations of both boundary and geometric imperfections. A nonlinear static finite-element analysis using the general purpose code STAGS [C.C. Rankin, F.A. Brogan, W.A. Loden, H.D. Cabiness. STAGS (STructural Analysis of General Shells) User Manual, LMSC P032594, Version 3.0. Lockheed Martin Missiles and Space Co., Inc., Palo Alto, CA, USA, 1998] is carried out for the calculation of the buckling response of the cylindrical shells. Finally, the cumulative distribution functions of the limit load using direct Monte Carlo simulation are shown.</description><subject>Buckling</subject><subject>Buckling analysis</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Karhunen–Loève expansion</subject><subject>Mathematical methods in physics</subject><subject>Monte Carlo simulation</subject><subject>Physics</subject><subject>Random geometric and boundary imperfections</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v1DAURS1EJYaWH8DOG9glPNtx7IgVVOVDqsSGri33-aX1kMSDnVDNv8ejqcQObyxZ91zrHsbeCmgFiP7DvsXZtxLAtKBaEN0LthPWDI0Uyr5kO4BON8ZK_Yq9LmUP9Vghd2z_ecNfU1weuF_8dCyx8DRyPNankCP6iZdHmqbCn-L6yHFb07YWHhectnCisl9Cmvl92pbg87G2BP5Aaaa10jzOB8oj4RrTUq7YxeinQm-e70t29-Xm5_W35vbH1-_Xn24bVNquTSCDBkcaKof30EnofBcs9drYQXoj5eC7XoJGRRpQ98IoBVJL6lD0FNQle3_uPeT0e6OyujkWrCP8QmkrTg6DBdPJGhTnIOZUSqbRHXKc6wonwJ2sur2rVt3JqgPlqtXKvHsu96XaGet-jOUfaG2vNOia-3jOUV36J1J2BSMtSCHm6sOFFP_zy19FTY7Z</recordid><startdate>20070715</startdate><enddate>20070715</enddate><creator>Schenk, C.A.</creator><creator>Schuëller, G.I.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070715</creationdate><title>Buckling analysis of cylindrical shells with cutouts including random boundary and geometric imperfections</title><author>Schenk, C.A. ; Schuëller, G.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-de7c7cfe9feccb04204a4d8e657892a7229a46205c3e50c5617330252e4c16ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Buckling</topic><topic>Buckling analysis</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Karhunen–Loève expansion</topic><topic>Mathematical methods in physics</topic><topic>Monte Carlo simulation</topic><topic>Physics</topic><topic>Random geometric and boundary imperfections</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schenk, C.A.</creatorcontrib><creatorcontrib>Schuëller, G.I.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schenk, C.A.</au><au>Schuëller, G.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Buckling analysis of cylindrical shells with cutouts including random boundary and geometric imperfections</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2007-07-15</date><risdate>2007</risdate><volume>196</volume><issue>35</issue><spage>3424</spage><epage>3434</epage><pages>3424-3434</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>In this paper, the effect of random geometric imperfections on the critical load of isotropic, thin-walled, cylindrical shells under axial compression with rectangular cutouts is presented. Second moment characteristics of geometric imperfections are estimated by data of available measurements, a simulation procedure based on the Karhunen–Loève expansion is applied for generating realizations of geometric imperfections. Nonlinear static finite-element analyses are carried out for the calculation of the response statistics of the critical load of the cylindrical shells. Cumulative distribution functions of the critical load as obtained by direct Monte Carlo simulation are presented. Furthermore, the individual and combined effects of random boundary and geometric imperfections on the limit loads of isotropic, thin-walled, cylindrical shells under axial compression are also treated. Again, second moment characteristics of these imperfections are estimated by data of available measurements of imperfections, a simulation procedure also based on the Karhunen–Loève expansion is applied for generating realizations of both boundary and geometric imperfections. A nonlinear static finite-element analysis using the general purpose code STAGS [C.C. Rankin, F.A. Brogan, W.A. Loden, H.D. Cabiness. STAGS (STructural Analysis of General Shells) User Manual, LMSC P032594, Version 3.0. Lockheed Martin Missiles and Space Co., Inc., Palo Alto, CA, USA, 1998] is carried out for the calculation of the buckling response of the cylindrical shells. Finally, the cumulative distribution functions of the limit load using direct Monte Carlo simulation are shown.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2007.03.014</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2007-07, Vol.196 (35), p.3424-3434
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_29980742
source Access via ScienceDirect (Elsevier)
subjects Buckling
Buckling analysis
Computational techniques
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Karhunen–Loève expansion
Mathematical methods in physics
Monte Carlo simulation
Physics
Random geometric and boundary imperfections
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
title Buckling analysis of cylindrical shells with cutouts including random boundary and geometric imperfections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T19%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Buckling%20analysis%20of%20cylindrical%20shells%20with%20cutouts%20including%20random%20boundary%20and%20geometric%20imperfections&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Schenk,%20C.A.&rft.date=2007-07-15&rft.volume=196&rft.issue=35&rft.spage=3424&rft.epage=3434&rft.pages=3424-3434&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/j.cma.2007.03.014&rft_dat=%3Cproquest_cross%3E29980742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29980742&rft_id=info:pmid/&rft_els_id=S004578250700148X&rfr_iscdi=true