Image-based classification of defects in frontal surface of fluted ingot
An image-based comparative study of different defect classification methods has been presented. Bayesian Network, Artificial Neural Network (ANN) and Probabilistic Neural Network (PNN) based classification techniques have been used for classifying the defects in frontal surface of fluted ingots, whi...
Gespeichert in:
Veröffentlicht in: | Measurement : journal of the International Measurement Confederation 2007-07, Vol.40 (6), p.687-698 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 698 |
---|---|
container_issue | 6 |
container_start_page | 687 |
container_title | Measurement : journal of the International Measurement Confederation |
container_volume | 40 |
creator | Mukherjee, Anirban Ray, Tathagata Chaudhuri, Subhasis Dutta, Pranab K. Sen, Siddhartha Patra, Amit |
description | An image-based comparative study of different defect classification methods has been presented. Bayesian Network, Artificial Neural Network (ANN) and Probabilistic Neural Network (PNN) based classification techniques have been used for classifying the defects in frontal surface of fluted ingots, which are used for the production of locomotive wheels. The complete system has been implemented for one of the integrated steel plant of India. |
doi_str_mv | 10.1016/j.measurement.2006.07.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29978900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224106001515</els_id><sourcerecordid>29978900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-3f41e237d35860011b11ff321fcbbaa5b511c16aef6c1673fe643e2c509ec4e03</originalsourceid><addsrcrecordid>eNqNkM1KxDAUhYMoOI6-Q924a81N2rRdyqCOMOBGwV1I05shQ9uMSSr49qaMC5euzuL8XO5HyC3QAiiI-0MxogqzxxGnWDBKRUHrgtLmjKygqXleAvs4JyvKBM8ZK-GSXIVwoCnIW7Ei25dR7THvVMA-04MKwRqrVbRuypzJejSoY8jslBnvpqiGLB0zSuPimmGOqWanvYvX5MKoIeDNr67J-9Pj22ab716fXzYPu1zzisWcmxKQ8brnVSMoBegAjOEMjO46paquAtAgFBqRpOYGRcmR6Yq2qEukfE3uTrtH7z5nDFGONmgcBjWhm4NkbVs3LV2C7SmovQvBo5FHb0flvyVQubCTB_mHnVzYSVrLxC51N6cupk--LHoZtMVJY2994iF7Z_-x8gP4BX7c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29978900</pqid></control><display><type>article</type><title>Image-based classification of defects in frontal surface of fluted ingot</title><source>Elsevier ScienceDirect Journals</source><creator>Mukherjee, Anirban ; Ray, Tathagata ; Chaudhuri, Subhasis ; Dutta, Pranab K. ; Sen, Siddhartha ; Patra, Amit</creator><creatorcontrib>Mukherjee, Anirban ; Ray, Tathagata ; Chaudhuri, Subhasis ; Dutta, Pranab K. ; Sen, Siddhartha ; Patra, Amit</creatorcontrib><description>An image-based comparative study of different defect classification methods has been presented. Bayesian Network, Artificial Neural Network (ANN) and Probabilistic Neural Network (PNN) based classification techniques have been used for classifying the defects in frontal surface of fluted ingots, which are used for the production of locomotive wheels. The complete system has been implemented for one of the integrated steel plant of India.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2006.07.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>ANN ; Bayesian Network ; Fluted ingot ; PNN ; Surface defect classification</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2007-07, Vol.40 (6), p.687-698</ispartof><rights>2006 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-3f41e237d35860011b11ff321fcbbaa5b511c16aef6c1673fe643e2c509ec4e03</citedby><cites>FETCH-LOGICAL-c352t-3f41e237d35860011b11ff321fcbbaa5b511c16aef6c1673fe643e2c509ec4e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0263224106001515$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mukherjee, Anirban</creatorcontrib><creatorcontrib>Ray, Tathagata</creatorcontrib><creatorcontrib>Chaudhuri, Subhasis</creatorcontrib><creatorcontrib>Dutta, Pranab K.</creatorcontrib><creatorcontrib>Sen, Siddhartha</creatorcontrib><creatorcontrib>Patra, Amit</creatorcontrib><title>Image-based classification of defects in frontal surface of fluted ingot</title><title>Measurement : journal of the International Measurement Confederation</title><description>An image-based comparative study of different defect classification methods has been presented. Bayesian Network, Artificial Neural Network (ANN) and Probabilistic Neural Network (PNN) based classification techniques have been used for classifying the defects in frontal surface of fluted ingots, which are used for the production of locomotive wheels. The complete system has been implemented for one of the integrated steel plant of India.</description><subject>ANN</subject><subject>Bayesian Network</subject><subject>Fluted ingot</subject><subject>PNN</subject><subject>Surface defect classification</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkM1KxDAUhYMoOI6-Q924a81N2rRdyqCOMOBGwV1I05shQ9uMSSr49qaMC5euzuL8XO5HyC3QAiiI-0MxogqzxxGnWDBKRUHrgtLmjKygqXleAvs4JyvKBM8ZK-GSXIVwoCnIW7Ei25dR7THvVMA-04MKwRqrVbRuypzJejSoY8jslBnvpqiGLB0zSuPimmGOqWanvYvX5MKoIeDNr67J-9Pj22ab716fXzYPu1zzisWcmxKQ8brnVSMoBegAjOEMjO46paquAtAgFBqRpOYGRcmR6Yq2qEukfE3uTrtH7z5nDFGONmgcBjWhm4NkbVs3LV2C7SmovQvBo5FHb0flvyVQubCTB_mHnVzYSVrLxC51N6cupk--LHoZtMVJY2994iF7Z_-x8gP4BX7c</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Mukherjee, Anirban</creator><creator>Ray, Tathagata</creator><creator>Chaudhuri, Subhasis</creator><creator>Dutta, Pranab K.</creator><creator>Sen, Siddhartha</creator><creator>Patra, Amit</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20070701</creationdate><title>Image-based classification of defects in frontal surface of fluted ingot</title><author>Mukherjee, Anirban ; Ray, Tathagata ; Chaudhuri, Subhasis ; Dutta, Pranab K. ; Sen, Siddhartha ; Patra, Amit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-3f41e237d35860011b11ff321fcbbaa5b511c16aef6c1673fe643e2c509ec4e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>ANN</topic><topic>Bayesian Network</topic><topic>Fluted ingot</topic><topic>PNN</topic><topic>Surface defect classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, Anirban</creatorcontrib><creatorcontrib>Ray, Tathagata</creatorcontrib><creatorcontrib>Chaudhuri, Subhasis</creatorcontrib><creatorcontrib>Dutta, Pranab K.</creatorcontrib><creatorcontrib>Sen, Siddhartha</creatorcontrib><creatorcontrib>Patra, Amit</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukherjee, Anirban</au><au>Ray, Tathagata</au><au>Chaudhuri, Subhasis</au><au>Dutta, Pranab K.</au><au>Sen, Siddhartha</au><au>Patra, Amit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image-based classification of defects in frontal surface of fluted ingot</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>40</volume><issue>6</issue><spage>687</spage><epage>698</epage><pages>687-698</pages><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>An image-based comparative study of different defect classification methods has been presented. Bayesian Network, Artificial Neural Network (ANN) and Probabilistic Neural Network (PNN) based classification techniques have been used for classifying the defects in frontal surface of fluted ingots, which are used for the production of locomotive wheels. The complete system has been implemented for one of the integrated steel plant of India.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2006.07.008</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-2241 |
ispartof | Measurement : journal of the International Measurement Confederation, 2007-07, Vol.40 (6), p.687-698 |
issn | 0263-2241 1873-412X |
language | eng |
recordid | cdi_proquest_miscellaneous_29978900 |
source | Elsevier ScienceDirect Journals |
subjects | ANN Bayesian Network Fluted ingot PNN Surface defect classification |
title | Image-based classification of defects in frontal surface of fluted ingot |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A49%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image-based%20classification%20of%20defects%20in%20frontal%20surface%20of%20fluted%20ingot&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Mukherjee,%20Anirban&rft.date=2007-07-01&rft.volume=40&rft.issue=6&rft.spage=687&rft.epage=698&rft.pages=687-698&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2006.07.008&rft_dat=%3Cproquest_cross%3E29978900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29978900&rft_id=info:pmid/&rft_els_id=S0263224106001515&rfr_iscdi=true |