Image-based classification of defects in frontal surface of fluted ingot

An image-based comparative study of different defect classification methods has been presented. Bayesian Network, Artificial Neural Network (ANN) and Probabilistic Neural Network (PNN) based classification techniques have been used for classifying the defects in frontal surface of fluted ingots, whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation 2007-07, Vol.40 (6), p.687-698
Hauptverfasser: Mukherjee, Anirban, Ray, Tathagata, Chaudhuri, Subhasis, Dutta, Pranab K., Sen, Siddhartha, Patra, Amit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 698
container_issue 6
container_start_page 687
container_title Measurement : journal of the International Measurement Confederation
container_volume 40
creator Mukherjee, Anirban
Ray, Tathagata
Chaudhuri, Subhasis
Dutta, Pranab K.
Sen, Siddhartha
Patra, Amit
description An image-based comparative study of different defect classification methods has been presented. Bayesian Network, Artificial Neural Network (ANN) and Probabilistic Neural Network (PNN) based classification techniques have been used for classifying the defects in frontal surface of fluted ingots, which are used for the production of locomotive wheels. The complete system has been implemented for one of the integrated steel plant of India.
doi_str_mv 10.1016/j.measurement.2006.07.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29978900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224106001515</els_id><sourcerecordid>29978900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-3f41e237d35860011b11ff321fcbbaa5b511c16aef6c1673fe643e2c509ec4e03</originalsourceid><addsrcrecordid>eNqNkM1KxDAUhYMoOI6-Q924a81N2rRdyqCOMOBGwV1I05shQ9uMSSr49qaMC5euzuL8XO5HyC3QAiiI-0MxogqzxxGnWDBKRUHrgtLmjKygqXleAvs4JyvKBM8ZK-GSXIVwoCnIW7Ei25dR7THvVMA-04MKwRqrVbRuypzJejSoY8jslBnvpqiGLB0zSuPimmGOqWanvYvX5MKoIeDNr67J-9Pj22ab716fXzYPu1zzisWcmxKQ8brnVSMoBegAjOEMjO46paquAtAgFBqRpOYGRcmR6Yq2qEukfE3uTrtH7z5nDFGONmgcBjWhm4NkbVs3LV2C7SmovQvBo5FHb0flvyVQubCTB_mHnVzYSVrLxC51N6cupk--LHoZtMVJY2994iF7Z_-x8gP4BX7c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29978900</pqid></control><display><type>article</type><title>Image-based classification of defects in frontal surface of fluted ingot</title><source>Elsevier ScienceDirect Journals</source><creator>Mukherjee, Anirban ; Ray, Tathagata ; Chaudhuri, Subhasis ; Dutta, Pranab K. ; Sen, Siddhartha ; Patra, Amit</creator><creatorcontrib>Mukherjee, Anirban ; Ray, Tathagata ; Chaudhuri, Subhasis ; Dutta, Pranab K. ; Sen, Siddhartha ; Patra, Amit</creatorcontrib><description>An image-based comparative study of different defect classification methods has been presented. Bayesian Network, Artificial Neural Network (ANN) and Probabilistic Neural Network (PNN) based classification techniques have been used for classifying the defects in frontal surface of fluted ingots, which are used for the production of locomotive wheels. The complete system has been implemented for one of the integrated steel plant of India.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2006.07.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>ANN ; Bayesian Network ; Fluted ingot ; PNN ; Surface defect classification</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2007-07, Vol.40 (6), p.687-698</ispartof><rights>2006 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-3f41e237d35860011b11ff321fcbbaa5b511c16aef6c1673fe643e2c509ec4e03</citedby><cites>FETCH-LOGICAL-c352t-3f41e237d35860011b11ff321fcbbaa5b511c16aef6c1673fe643e2c509ec4e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0263224106001515$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mukherjee, Anirban</creatorcontrib><creatorcontrib>Ray, Tathagata</creatorcontrib><creatorcontrib>Chaudhuri, Subhasis</creatorcontrib><creatorcontrib>Dutta, Pranab K.</creatorcontrib><creatorcontrib>Sen, Siddhartha</creatorcontrib><creatorcontrib>Patra, Amit</creatorcontrib><title>Image-based classification of defects in frontal surface of fluted ingot</title><title>Measurement : journal of the International Measurement Confederation</title><description>An image-based comparative study of different defect classification methods has been presented. Bayesian Network, Artificial Neural Network (ANN) and Probabilistic Neural Network (PNN) based classification techniques have been used for classifying the defects in frontal surface of fluted ingots, which are used for the production of locomotive wheels. The complete system has been implemented for one of the integrated steel plant of India.</description><subject>ANN</subject><subject>Bayesian Network</subject><subject>Fluted ingot</subject><subject>PNN</subject><subject>Surface defect classification</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkM1KxDAUhYMoOI6-Q924a81N2rRdyqCOMOBGwV1I05shQ9uMSSr49qaMC5euzuL8XO5HyC3QAiiI-0MxogqzxxGnWDBKRUHrgtLmjKygqXleAvs4JyvKBM8ZK-GSXIVwoCnIW7Ei25dR7THvVMA-04MKwRqrVbRuypzJejSoY8jslBnvpqiGLB0zSuPimmGOqWanvYvX5MKoIeDNr67J-9Pj22ab716fXzYPu1zzisWcmxKQ8brnVSMoBegAjOEMjO46paquAtAgFBqRpOYGRcmR6Yq2qEukfE3uTrtH7z5nDFGONmgcBjWhm4NkbVs3LV2C7SmovQvBo5FHb0flvyVQubCTB_mHnVzYSVrLxC51N6cupk--LHoZtMVJY2994iF7Z_-x8gP4BX7c</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Mukherjee, Anirban</creator><creator>Ray, Tathagata</creator><creator>Chaudhuri, Subhasis</creator><creator>Dutta, Pranab K.</creator><creator>Sen, Siddhartha</creator><creator>Patra, Amit</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20070701</creationdate><title>Image-based classification of defects in frontal surface of fluted ingot</title><author>Mukherjee, Anirban ; Ray, Tathagata ; Chaudhuri, Subhasis ; Dutta, Pranab K. ; Sen, Siddhartha ; Patra, Amit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-3f41e237d35860011b11ff321fcbbaa5b511c16aef6c1673fe643e2c509ec4e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>ANN</topic><topic>Bayesian Network</topic><topic>Fluted ingot</topic><topic>PNN</topic><topic>Surface defect classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, Anirban</creatorcontrib><creatorcontrib>Ray, Tathagata</creatorcontrib><creatorcontrib>Chaudhuri, Subhasis</creatorcontrib><creatorcontrib>Dutta, Pranab K.</creatorcontrib><creatorcontrib>Sen, Siddhartha</creatorcontrib><creatorcontrib>Patra, Amit</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukherjee, Anirban</au><au>Ray, Tathagata</au><au>Chaudhuri, Subhasis</au><au>Dutta, Pranab K.</au><au>Sen, Siddhartha</au><au>Patra, Amit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image-based classification of defects in frontal surface of fluted ingot</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>40</volume><issue>6</issue><spage>687</spage><epage>698</epage><pages>687-698</pages><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>An image-based comparative study of different defect classification methods has been presented. Bayesian Network, Artificial Neural Network (ANN) and Probabilistic Neural Network (PNN) based classification techniques have been used for classifying the defects in frontal surface of fluted ingots, which are used for the production of locomotive wheels. The complete system has been implemented for one of the integrated steel plant of India.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2006.07.008</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2007-07, Vol.40 (6), p.687-698
issn 0263-2241
1873-412X
language eng
recordid cdi_proquest_miscellaneous_29978900
source Elsevier ScienceDirect Journals
subjects ANN
Bayesian Network
Fluted ingot
PNN
Surface defect classification
title Image-based classification of defects in frontal surface of fluted ingot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A49%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image-based%20classification%20of%20defects%20in%20frontal%20surface%20of%20fluted%20ingot&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Mukherjee,%20Anirban&rft.date=2007-07-01&rft.volume=40&rft.issue=6&rft.spage=687&rft.epage=698&rft.pages=687-698&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2006.07.008&rft_dat=%3Cproquest_cross%3E29978900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29978900&rft_id=info:pmid/&rft_els_id=S0263224106001515&rfr_iscdi=true