Turbulent mixing at a stable density interface: the variation of the buoyancy flux–gradient relation
Experiments conducted on mixing across a stable density interface in a turbulent Taylor–Couette flow show, for the first time, experimental evidence of an increase in mixing efficiency at large Richardson numbers. With increasing buoyancy gradient the buoyancy flux first passes a maximum, then decre...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2007-04, Vol.577, p.127-136 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 136 |
---|---|
container_issue | |
container_start_page | 127 |
container_title | Journal of fluid mechanics |
container_volume | 577 |
creator | GUYEZ, E. FLOR, J.-B. HOPFINGER, E. J. |
description | Experiments conducted on mixing across a stable density interface in a turbulent Taylor–Couette flow show, for the first time, experimental evidence of an increase in mixing efficiency at large Richardson numbers. With increasing buoyancy gradient the buoyancy flux first passes a maximum, then decreases and at large values of the buoyancy gradient the flux increases again. Thus, the curve of buoyancy flux versus buoyancy gradient tends to be N-shaped (rather than simply bell shaped), a behaviour suggested by the model of Balmforth et al. (J. Fluid Mech. vol. 428, 1998, p. 349). The increase in mixing efficiency at large Richardson numbers is attributed to a scale separation of the eddies active in mixing at the interface; when the buoyancy gradient is large mean kinetic energy is injected at scales much smaller than the eddy size fixed by the gap width, thus decreasing the eddy turnover time. Observations show that there is no noticeable change in interface thickness when the mixing efficiency increases; it is the mixing mechanism that changes. The curves of buoyancy flux versus buoyancy gradient also show a large variability for identical experimental conditions. These variations occur at time scales one to two orders of magnitude larger than the eddy turnover time scale. |
doi_str_mv | 10.1017/S0022112007004958 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29976165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112007004958</cupid><sourcerecordid>29976165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-d69657cfd64759ac732c196fb867588252a52703ccfc3211832caab2e374c9803</originalsourceid><addsrcrecordid>eNqFkc2KFDEUhYMo2M74AO6CoLvS_FT-3Mloj0LDMDoiuAm3UkmbsbpqJklJ98538A3nSayabhxQxFUg57uHc-5F6AklLyih6uVHQhijlBGiCKmN0PfQgtbSVErW4j5azHI16w_Ro5wvCaGcGLVA4WJMzdj5vuBN3MZ-jaFgwLlA03nc-j7HssOxLz4FcP4VLl89_g4pQolDj4dw-9GMww56t8OhG7c3P36uE7Rx9ky-uwWP0YMAXfaPD-8R-rR8e3Hyrlqdnb4_eb2qXK1NqVpppFAutLJWwoBTnDlqZGi0VEJrJhgIpgh3Ljg-1dWTDtAwz1XtjCb8CD3f-16l4Xr0udhNzM53HfR-GLNlxihJpfg_SDg3TKoJfPoHeDmMqZ9KWEaJNpQYM0F0D7k05Jx8sFcpbiDtLCV2vo_96z7TzLODMWQHXUjTAmO-G9TSGM3nStWei7n47W8d0jc7xVPCytNz-4Ev33xZfl7Z2ZcfssCmSbFd-7vE_07zC5Psrj0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210891099</pqid></control><display><type>article</type><title>Turbulent mixing at a stable density interface: the variation of the buoyancy flux–gradient relation</title><source>Cambridge University Press Journals Complete</source><creator>GUYEZ, E. ; FLOR, J.-B. ; HOPFINGER, E. J.</creator><creatorcontrib>GUYEZ, E. ; FLOR, J.-B. ; HOPFINGER, E. J.</creatorcontrib><description>Experiments conducted on mixing across a stable density interface in a turbulent Taylor–Couette flow show, for the first time, experimental evidence of an increase in mixing efficiency at large Richardson numbers. With increasing buoyancy gradient the buoyancy flux first passes a maximum, then decreases and at large values of the buoyancy gradient the flux increases again. Thus, the curve of buoyancy flux versus buoyancy gradient tends to be N-shaped (rather than simply bell shaped), a behaviour suggested by the model of Balmforth et al. (J. Fluid Mech. vol. 428, 1998, p. 349). The increase in mixing efficiency at large Richardson numbers is attributed to a scale separation of the eddies active in mixing at the interface; when the buoyancy gradient is large mean kinetic energy is injected at scales much smaller than the eddy size fixed by the gap width, thus decreasing the eddy turnover time. Observations show that there is no noticeable change in interface thickness when the mixing efficiency increases; it is the mixing mechanism that changes. The curves of buoyancy flux versus buoyancy gradient also show a large variability for identical experimental conditions. These variations occur at time scales one to two orders of magnitude larger than the eddy turnover time scale.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112007004958</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Buoyancy ; Earth, ocean, space ; Eddies ; Exact sciences and technology ; Experiments ; External geophysics ; Fluctuations ; Fluid dynamics ; Geophysics. Techniques, methods, instrumentation and models ; Kinetic energy ; Physics ; Turbulence ; Turnover time</subject><ispartof>Journal of fluid mechanics, 2007-04, Vol.577, p.127-136</ispartof><rights>Copyright © Cambridge University Press 2007</rights><rights>2007 INIST-CNRS</rights><rights>Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-d69657cfd64759ac732c196fb867588252a52703ccfc3211832caab2e374c9803</citedby><cites>FETCH-LOGICAL-c489t-d69657cfd64759ac732c196fb867588252a52703ccfc3211832caab2e374c9803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112007004958/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,27907,27908,55611</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18699830$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GUYEZ, E.</creatorcontrib><creatorcontrib>FLOR, J.-B.</creatorcontrib><creatorcontrib>HOPFINGER, E. J.</creatorcontrib><title>Turbulent mixing at a stable density interface: the variation of the buoyancy flux–gradient relation</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Experiments conducted on mixing across a stable density interface in a turbulent Taylor–Couette flow show, for the first time, experimental evidence of an increase in mixing efficiency at large Richardson numbers. With increasing buoyancy gradient the buoyancy flux first passes a maximum, then decreases and at large values of the buoyancy gradient the flux increases again. Thus, the curve of buoyancy flux versus buoyancy gradient tends to be N-shaped (rather than simply bell shaped), a behaviour suggested by the model of Balmforth et al. (J. Fluid Mech. vol. 428, 1998, p. 349). The increase in mixing efficiency at large Richardson numbers is attributed to a scale separation of the eddies active in mixing at the interface; when the buoyancy gradient is large mean kinetic energy is injected at scales much smaller than the eddy size fixed by the gap width, thus decreasing the eddy turnover time. Observations show that there is no noticeable change in interface thickness when the mixing efficiency increases; it is the mixing mechanism that changes. The curves of buoyancy flux versus buoyancy gradient also show a large variability for identical experimental conditions. These variations occur at time scales one to two orders of magnitude larger than the eddy turnover time scale.</description><subject>Buoyancy</subject><subject>Earth, ocean, space</subject><subject>Eddies</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>External geophysics</subject><subject>Fluctuations</subject><subject>Fluid dynamics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Kinetic energy</subject><subject>Physics</subject><subject>Turbulence</subject><subject>Turnover time</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc2KFDEUhYMo2M74AO6CoLvS_FT-3Mloj0LDMDoiuAm3UkmbsbpqJklJ98538A3nSayabhxQxFUg57uHc-5F6AklLyih6uVHQhijlBGiCKmN0PfQgtbSVErW4j5azHI16w_Ro5wvCaGcGLVA4WJMzdj5vuBN3MZ-jaFgwLlA03nc-j7HssOxLz4FcP4VLl89_g4pQolDj4dw-9GMww56t8OhG7c3P36uE7Rx9ky-uwWP0YMAXfaPD-8R-rR8e3Hyrlqdnb4_eb2qXK1NqVpppFAutLJWwoBTnDlqZGi0VEJrJhgIpgh3Ljg-1dWTDtAwz1XtjCb8CD3f-16l4Xr0udhNzM53HfR-GLNlxihJpfg_SDg3TKoJfPoHeDmMqZ9KWEaJNpQYM0F0D7k05Jx8sFcpbiDtLCV2vo_96z7TzLODMWQHXUjTAmO-G9TSGM3nStWei7n47W8d0jc7xVPCytNz-4Ev33xZfl7Z2ZcfssCmSbFd-7vE_07zC5Psrj0</recordid><startdate>20070425</startdate><enddate>20070425</enddate><creator>GUYEZ, E.</creator><creator>FLOR, J.-B.</creator><creator>HOPFINGER, E. J.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20070425</creationdate><title>Turbulent mixing at a stable density interface: the variation of the buoyancy flux–gradient relation</title><author>GUYEZ, E. ; FLOR, J.-B. ; HOPFINGER, E. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-d69657cfd64759ac732c196fb867588252a52703ccfc3211832caab2e374c9803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Buoyancy</topic><topic>Earth, ocean, space</topic><topic>Eddies</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>External geophysics</topic><topic>Fluctuations</topic><topic>Fluid dynamics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Kinetic energy</topic><topic>Physics</topic><topic>Turbulence</topic><topic>Turnover time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GUYEZ, E.</creatorcontrib><creatorcontrib>FLOR, J.-B.</creatorcontrib><creatorcontrib>HOPFINGER, E. J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GUYEZ, E.</au><au>FLOR, J.-B.</au><au>HOPFINGER, E. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulent mixing at a stable density interface: the variation of the buoyancy flux–gradient relation</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2007-04-25</date><risdate>2007</risdate><volume>577</volume><spage>127</spage><epage>136</epage><pages>127-136</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>Experiments conducted on mixing across a stable density interface in a turbulent Taylor–Couette flow show, for the first time, experimental evidence of an increase in mixing efficiency at large Richardson numbers. With increasing buoyancy gradient the buoyancy flux first passes a maximum, then decreases and at large values of the buoyancy gradient the flux increases again. Thus, the curve of buoyancy flux versus buoyancy gradient tends to be N-shaped (rather than simply bell shaped), a behaviour suggested by the model of Balmforth et al. (J. Fluid Mech. vol. 428, 1998, p. 349). The increase in mixing efficiency at large Richardson numbers is attributed to a scale separation of the eddies active in mixing at the interface; when the buoyancy gradient is large mean kinetic energy is injected at scales much smaller than the eddy size fixed by the gap width, thus decreasing the eddy turnover time. Observations show that there is no noticeable change in interface thickness when the mixing efficiency increases; it is the mixing mechanism that changes. The curves of buoyancy flux versus buoyancy gradient also show a large variability for identical experimental conditions. These variations occur at time scales one to two orders of magnitude larger than the eddy turnover time scale.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112007004958</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2007-04, Vol.577, p.127-136 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_29976165 |
source | Cambridge University Press Journals Complete |
subjects | Buoyancy Earth, ocean, space Eddies Exact sciences and technology Experiments External geophysics Fluctuations Fluid dynamics Geophysics. Techniques, methods, instrumentation and models Kinetic energy Physics Turbulence Turnover time |
title | Turbulent mixing at a stable density interface: the variation of the buoyancy flux–gradient relation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulent%20mixing%20at%20a%20stable%20density%20interface:%20the%20variation%20of%20the%20buoyancy%20flux%E2%80%93gradient%20relation&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=GUYEZ,%20E.&rft.date=2007-04-25&rft.volume=577&rft.spage=127&rft.epage=136&rft.pages=127-136&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112007004958&rft_dat=%3Cproquest_cross%3E29976165%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210891099&rft_id=info:pmid/&rft_cupid=10_1017_S0022112007004958&rfr_iscdi=true |