The Two-Commponent Model and 2d Metal-Insulator Transition

Fermi liquid theory for the 2d MIT is extended to include the soft correlation gap (CG) in the density-of-states N(E) from carrier interactions [N(E)alpha(E-E_F)t] producing a minimum in N(E) at E_F. The results are consistent with the scaling form g=g_cexp(xT_o/T) in a limited T-regime, but not as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the American Physical Society 2004-03, Vol.49 (1)
1. Verfasser: Castner, Theodore G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Bulletin of the American Physical Society
container_volume 49
creator Castner, Theodore G
description Fermi liquid theory for the 2d MIT is extended to include the soft correlation gap (CG) in the density-of-states N(E) from carrier interactions [N(E)alpha(E-E_F)t] producing a minimum in N(E) at E_F. The results are consistent with the scaling form g=g_cexp(xT_o/T) in a limited T-regime, but not as Trightarrow0 ruling out the perfect conductor scenario. The two-component model of itinerant plus localized electrons n_i+n_loc=n=n_c(1+x) for n > n_c is an essential feature and allows a full explanation of the T-dependence of the metallic resistivity ratio rho_i(T)/rho_i(0) [rho_i= 1/(sigma-sigma_c)] including the maximum at T_max. The results explain the Hanein et al. data1 for p-type GaAs and show p_i(T)/p_i(0)=1+T/T_phi in a restricted T-range where T_phi=xT_c [T_c=E_c/k, E_c=mobility edge] as x=p/p_c-1 goes to 0. The correction to E_F from the soft CG [of width |Delta_c] yields a constant ratio E_F/Delta_c as Xgoes to 0. The origin of the nonuniversal g_c [rho_c at x=0] and implications for the beta function beta(g)=ln(g/g_c) and single particle scaling will be discussed. 1. Y. Hanein et al., PRL80, 1288 (1998);Phys.Rev.B58, R13338 (1998).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_29975124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29975124</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_299751243</originalsourceid><addsrcrecordid>eNqNyr0KwjAQAOAMCtafd8jkFrj-IXEtig7dspdgr1hJ7movxdd38QGcvuVbqQwASgM1lBu1FXkB5JWt8kyd3RO1-7BpOMaJCSnplnsM2lOvi163mHwwd5Il-MSzdrMnGdPItFfrwQfBw8-dOl4vrrmZaeb3gpK6OMoDQ_CEvEhXWHuq86Iq_45fc3s44w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29975124</pqid></control><display><type>article</type><title>The Two-Commponent Model and 2d Metal-Insulator Transition</title><source>Alma/SFX Local Collection</source><creator>Castner, Theodore G</creator><creatorcontrib>Castner, Theodore G</creatorcontrib><description>Fermi liquid theory for the 2d MIT is extended to include the soft correlation gap (CG) in the density-of-states N(E) from carrier interactions [N(E)alpha(E-E_F)t] producing a minimum in N(E) at E_F. The results are consistent with the scaling form g=g_cexp(xT_o/T) in a limited T-regime, but not as Trightarrow0 ruling out the perfect conductor scenario. The two-component model of itinerant plus localized electrons n_i+n_loc=n=n_c(1+x) for n &gt; n_c is an essential feature and allows a full explanation of the T-dependence of the metallic resistivity ratio rho_i(T)/rho_i(0) [rho_i= 1/(sigma-sigma_c)] including the maximum at T_max. The results explain the Hanein et al. data1 for p-type GaAs and show p_i(T)/p_i(0)=1+T/T_phi in a restricted T-range where T_phi=xT_c [T_c=E_c/k, E_c=mobility edge] as x=p/p_c-1 goes to 0. The correction to E_F from the soft CG [of width |Delta_c] yields a constant ratio E_F/Delta_c as Xgoes to 0. The origin of the nonuniversal g_c [rho_c at x=0] and implications for the beta function beta(g)=ln(g/g_c) and single particle scaling will be discussed. 1. Y. Hanein et al., PRL80, 1288 (1998);Phys.Rev.B58, R13338 (1998).</description><identifier>ISSN: 0003-0503</identifier><language>eng</language><ispartof>Bulletin of the American Physical Society, 2004-03, Vol.49 (1)</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782</link.rule.ids></links><search><creatorcontrib>Castner, Theodore G</creatorcontrib><title>The Two-Commponent Model and 2d Metal-Insulator Transition</title><title>Bulletin of the American Physical Society</title><description>Fermi liquid theory for the 2d MIT is extended to include the soft correlation gap (CG) in the density-of-states N(E) from carrier interactions [N(E)alpha(E-E_F)t] producing a minimum in N(E) at E_F. The results are consistent with the scaling form g=g_cexp(xT_o/T) in a limited T-regime, but not as Trightarrow0 ruling out the perfect conductor scenario. The two-component model of itinerant plus localized electrons n_i+n_loc=n=n_c(1+x) for n &gt; n_c is an essential feature and allows a full explanation of the T-dependence of the metallic resistivity ratio rho_i(T)/rho_i(0) [rho_i= 1/(sigma-sigma_c)] including the maximum at T_max. The results explain the Hanein et al. data1 for p-type GaAs and show p_i(T)/p_i(0)=1+T/T_phi in a restricted T-range where T_phi=xT_c [T_c=E_c/k, E_c=mobility edge] as x=p/p_c-1 goes to 0. The correction to E_F from the soft CG [of width |Delta_c] yields a constant ratio E_F/Delta_c as Xgoes to 0. The origin of the nonuniversal g_c [rho_c at x=0] and implications for the beta function beta(g)=ln(g/g_c) and single particle scaling will be discussed. 1. Y. Hanein et al., PRL80, 1288 (1998);Phys.Rev.B58, R13338 (1998).</description><issn>0003-0503</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNyr0KwjAQAOAMCtafd8jkFrj-IXEtig7dspdgr1hJ7movxdd38QGcvuVbqQwASgM1lBu1FXkB5JWt8kyd3RO1-7BpOMaJCSnplnsM2lOvi163mHwwd5Il-MSzdrMnGdPItFfrwQfBw8-dOl4vrrmZaeb3gpK6OMoDQ_CEvEhXWHuq86Iq_45fc3s44w</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Castner, Theodore G</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20040301</creationdate><title>The Two-Commponent Model and 2d Metal-Insulator Transition</title><author>Castner, Theodore G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_299751243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Castner, Theodore G</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Bulletin of the American Physical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castner, Theodore G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Two-Commponent Model and 2d Metal-Insulator Transition</atitle><jtitle>Bulletin of the American Physical Society</jtitle><date>2004-03-01</date><risdate>2004</risdate><volume>49</volume><issue>1</issue><issn>0003-0503</issn><abstract>Fermi liquid theory for the 2d MIT is extended to include the soft correlation gap (CG) in the density-of-states N(E) from carrier interactions [N(E)alpha(E-E_F)t] producing a minimum in N(E) at E_F. The results are consistent with the scaling form g=g_cexp(xT_o/T) in a limited T-regime, but not as Trightarrow0 ruling out the perfect conductor scenario. The two-component model of itinerant plus localized electrons n_i+n_loc=n=n_c(1+x) for n &gt; n_c is an essential feature and allows a full explanation of the T-dependence of the metallic resistivity ratio rho_i(T)/rho_i(0) [rho_i= 1/(sigma-sigma_c)] including the maximum at T_max. The results explain the Hanein et al. data1 for p-type GaAs and show p_i(T)/p_i(0)=1+T/T_phi in a restricted T-range where T_phi=xT_c [T_c=E_c/k, E_c=mobility edge] as x=p/p_c-1 goes to 0. The correction to E_F from the soft CG [of width |Delta_c] yields a constant ratio E_F/Delta_c as Xgoes to 0. The origin of the nonuniversal g_c [rho_c at x=0] and implications for the beta function beta(g)=ln(g/g_c) and single particle scaling will be discussed. 1. Y. Hanein et al., PRL80, 1288 (1998);Phys.Rev.B58, R13338 (1998).</abstract></addata></record>
fulltext fulltext
identifier ISSN: 0003-0503
ispartof Bulletin of the American Physical Society, 2004-03, Vol.49 (1)
issn 0003-0503
language eng
recordid cdi_proquest_miscellaneous_29975124
source Alma/SFX Local Collection
title The Two-Commponent Model and 2d Metal-Insulator Transition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A32%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Two-Commponent%20Model%20and%202d%20Metal-Insulator%20Transition&rft.jtitle=Bulletin%20of%20the%20American%20Physical%20Society&rft.au=Castner,%20Theodore%20G&rft.date=2004-03-01&rft.volume=49&rft.issue=1&rft.issn=0003-0503&rft_id=info:doi/&rft_dat=%3Cproquest%3E29975124%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29975124&rft_id=info:pmid/&rfr_iscdi=true