Multi-scale analysis of AFM tip and surface interactions

Thoroughly understanding AFM tip–surface interactions is crucial for many experimental studies and applications. It is important to realize that despite its simple appearance, the system of tip and sample surface involves multiscale interactions. In fact, the system is governed by a combination of m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2007-07, Vol.62 (13), p.3589-3594
Hauptverfasser: Wang, Haiying, Hu, Ming, Liu, Nan, Xia, Mengfen, Ke, Fujiu, Bai, Yilong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3594
container_issue 13
container_start_page 3589
container_title Chemical engineering science
container_volume 62
creator Wang, Haiying
Hu, Ming
Liu, Nan
Xia, Mengfen
Ke, Fujiu
Bai, Yilong
description Thoroughly understanding AFM tip–surface interactions is crucial for many experimental studies and applications. It is important to realize that despite its simple appearance, the system of tip and sample surface involves multiscale interactions. In fact, the system is governed by a combination of molecular force (like the van der Waals force), its macroscopic representations (such as surface force) and gravitational force (a macroscopic force). Hence, in the system, various length scales are operative, from sub-nanoscale (at the molecular level) to the macroscopic scale. By integrating molecular forces into continuum equations, we performed a multiscale analysis and revealed the nonlocality effect between a tip and a rough solid surface and the mechanism governing liquid surface deformation and jumping. The results have several significant implications for practical applications. For instance, nonlocality may affect the measurement accuracy of surface morphology. At the critical state of liquid surface jump, the ratio of the gap between a tip and a liquid dome ( δ ) over the dome height ( y 0 ) is approximately ( n - 4 ) (for a large tip), which depends on the power law exponent n of the molecular interaction energy. These findings demonstrate that the multiscale analysis is not only useful but also necessary in the understanding of practical phenomena involving molecular forces.
doi_str_mv 10.1016/j.ces.2006.11.060
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29973468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250907002801</els_id><sourcerecordid>29973468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-c0edf707c5fce08aec3681e59446bc229be018d97074056c64c8066f1836cda03</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_gLecvCXOJOlmg6dS_IIWL3petpMJbEmTupMI_fduqWdPwwzvM8w8St0jZAioH3cZsWQ5gM4QM9BwoWZoqiItS1hcqhkA1Gm-gPpa3YjsYltVCDNlNlM3-lTIdZy43nVH8ZIMbbJ82SSjP8RZk8gUWkec-H7k4Gj0Qy-36qp1nfDdX52rr5fnz9Vbuv54fV8t1ykVFY4pATdtBRUtWmIwjqnQBnlRl6XeUp7XWwY0TR0j8VBNuiQDWrdoCk2Ng2KuHs57D2H4nlhGu_dC3HWu52ESm9d1VZTaxCCegxQGkcCtPQS_d-FoEezJkd3Z6MieHFlEGx1F5unMcPzgx3OwQp574sYHptE2g_-H_gWR723T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29973468</pqid></control><display><type>article</type><title>Multi-scale analysis of AFM tip and surface interactions</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Haiying ; Hu, Ming ; Liu, Nan ; Xia, Mengfen ; Ke, Fujiu ; Bai, Yilong</creator><creatorcontrib>Wang, Haiying ; Hu, Ming ; Liu, Nan ; Xia, Mengfen ; Ke, Fujiu ; Bai, Yilong</creatorcontrib><description>Thoroughly understanding AFM tip–surface interactions is crucial for many experimental studies and applications. It is important to realize that despite its simple appearance, the system of tip and sample surface involves multiscale interactions. In fact, the system is governed by a combination of molecular force (like the van der Waals force), its macroscopic representations (such as surface force) and gravitational force (a macroscopic force). Hence, in the system, various length scales are operative, from sub-nanoscale (at the molecular level) to the macroscopic scale. By integrating molecular forces into continuum equations, we performed a multiscale analysis and revealed the nonlocality effect between a tip and a rough solid surface and the mechanism governing liquid surface deformation and jumping. The results have several significant implications for practical applications. For instance, nonlocality may affect the measurement accuracy of surface morphology. At the critical state of liquid surface jump, the ratio of the gap between a tip and a liquid dome ( δ ) over the dome height ( y 0 ) is approximately ( n - 4 ) (for a large tip), which depends on the power law exponent n of the molecular interaction energy. These findings demonstrate that the multiscale analysis is not only useful but also necessary in the understanding of practical phenomena involving molecular forces.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2006.11.060</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>AFM ; Interaction ; Multiscale ; Sample ; Tip</subject><ispartof>Chemical engineering science, 2007-07, Vol.62 (13), p.3589-3594</ispartof><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-c0edf707c5fce08aec3681e59446bc229be018d97074056c64c8066f1836cda03</citedby><cites>FETCH-LOGICAL-c371t-c0edf707c5fce08aec3681e59446bc229be018d97074056c64c8066f1836cda03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ces.2006.11.060$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Wang, Haiying</creatorcontrib><creatorcontrib>Hu, Ming</creatorcontrib><creatorcontrib>Liu, Nan</creatorcontrib><creatorcontrib>Xia, Mengfen</creatorcontrib><creatorcontrib>Ke, Fujiu</creatorcontrib><creatorcontrib>Bai, Yilong</creatorcontrib><title>Multi-scale analysis of AFM tip and surface interactions</title><title>Chemical engineering science</title><description>Thoroughly understanding AFM tip–surface interactions is crucial for many experimental studies and applications. It is important to realize that despite its simple appearance, the system of tip and sample surface involves multiscale interactions. In fact, the system is governed by a combination of molecular force (like the van der Waals force), its macroscopic representations (such as surface force) and gravitational force (a macroscopic force). Hence, in the system, various length scales are operative, from sub-nanoscale (at the molecular level) to the macroscopic scale. By integrating molecular forces into continuum equations, we performed a multiscale analysis and revealed the nonlocality effect between a tip and a rough solid surface and the mechanism governing liquid surface deformation and jumping. The results have several significant implications for practical applications. For instance, nonlocality may affect the measurement accuracy of surface morphology. At the critical state of liquid surface jump, the ratio of the gap between a tip and a liquid dome ( δ ) over the dome height ( y 0 ) is approximately ( n - 4 ) (for a large tip), which depends on the power law exponent n of the molecular interaction energy. These findings demonstrate that the multiscale analysis is not only useful but also necessary in the understanding of practical phenomena involving molecular forces.</description><subject>AFM</subject><subject>Interaction</subject><subject>Multiscale</subject><subject>Sample</subject><subject>Tip</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFZ_gLecvCXOJOlmg6dS_IIWL3petpMJbEmTupMI_fduqWdPwwzvM8w8St0jZAioH3cZsWQ5gM4QM9BwoWZoqiItS1hcqhkA1Gm-gPpa3YjsYltVCDNlNlM3-lTIdZy43nVH8ZIMbbJ82SSjP8RZk8gUWkec-H7k4Gj0Qy-36qp1nfDdX52rr5fnz9Vbuv54fV8t1ykVFY4pATdtBRUtWmIwjqnQBnlRl6XeUp7XWwY0TR0j8VBNuiQDWrdoCk2Ng2KuHs57D2H4nlhGu_dC3HWu52ESm9d1VZTaxCCegxQGkcCtPQS_d-FoEezJkd3Z6MieHFlEGx1F5unMcPzgx3OwQp574sYHptE2g_-H_gWR723T</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Wang, Haiying</creator><creator>Hu, Ming</creator><creator>Liu, Nan</creator><creator>Xia, Mengfen</creator><creator>Ke, Fujiu</creator><creator>Bai, Yilong</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20070701</creationdate><title>Multi-scale analysis of AFM tip and surface interactions</title><author>Wang, Haiying ; Hu, Ming ; Liu, Nan ; Xia, Mengfen ; Ke, Fujiu ; Bai, Yilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-c0edf707c5fce08aec3681e59446bc229be018d97074056c64c8066f1836cda03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>AFM</topic><topic>Interaction</topic><topic>Multiscale</topic><topic>Sample</topic><topic>Tip</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haiying</creatorcontrib><creatorcontrib>Hu, Ming</creatorcontrib><creatorcontrib>Liu, Nan</creatorcontrib><creatorcontrib>Xia, Mengfen</creatorcontrib><creatorcontrib>Ke, Fujiu</creatorcontrib><creatorcontrib>Bai, Yilong</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haiying</au><au>Hu, Ming</au><au>Liu, Nan</au><au>Xia, Mengfen</au><au>Ke, Fujiu</au><au>Bai, Yilong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-scale analysis of AFM tip and surface interactions</atitle><jtitle>Chemical engineering science</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>62</volume><issue>13</issue><spage>3589</spage><epage>3594</epage><pages>3589-3594</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><abstract>Thoroughly understanding AFM tip–surface interactions is crucial for many experimental studies and applications. It is important to realize that despite its simple appearance, the system of tip and sample surface involves multiscale interactions. In fact, the system is governed by a combination of molecular force (like the van der Waals force), its macroscopic representations (such as surface force) and gravitational force (a macroscopic force). Hence, in the system, various length scales are operative, from sub-nanoscale (at the molecular level) to the macroscopic scale. By integrating molecular forces into continuum equations, we performed a multiscale analysis and revealed the nonlocality effect between a tip and a rough solid surface and the mechanism governing liquid surface deformation and jumping. The results have several significant implications for practical applications. For instance, nonlocality may affect the measurement accuracy of surface morphology. At the critical state of liquid surface jump, the ratio of the gap between a tip and a liquid dome ( δ ) over the dome height ( y 0 ) is approximately ( n - 4 ) (for a large tip), which depends on the power law exponent n of the molecular interaction energy. These findings demonstrate that the multiscale analysis is not only useful but also necessary in the understanding of practical phenomena involving molecular forces.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2006.11.060</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2007-07, Vol.62 (13), p.3589-3594
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_29973468
source Elsevier ScienceDirect Journals
subjects AFM
Interaction
Multiscale
Sample
Tip
title Multi-scale analysis of AFM tip and surface interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-scale%20analysis%20of%20AFM%20tip%20and%20surface%20interactions&rft.jtitle=Chemical%20engineering%20science&rft.au=Wang,%20Haiying&rft.date=2007-07-01&rft.volume=62&rft.issue=13&rft.spage=3589&rft.epage=3594&rft.pages=3589-3594&rft.issn=0009-2509&rft.eissn=1873-4405&rft_id=info:doi/10.1016/j.ces.2006.11.060&rft_dat=%3Cproquest_cross%3E29973468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29973468&rft_id=info:pmid/&rft_els_id=S0009250907002801&rfr_iscdi=true