Lanchester’s equations in three dimensions

This paper generalizes Lanchester’s equations of warfare to partial differential equations involving time and two spatial variables. Unlike in Lanchester’s original ordinary differential equations, the distribution of armies over the battlefield must be considered. Four different modes of attack are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2007-04, Vol.53 (7), p.999-1011
Hauptverfasser: Spradlin, Christina, Spradlin, Greg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1011
container_issue 7
container_start_page 999
container_title Computers & mathematics with applications (1987)
container_volume 53
creator Spradlin, Christina
Spradlin, Greg
description This paper generalizes Lanchester’s equations of warfare to partial differential equations involving time and two spatial variables. Unlike in Lanchester’s original ordinary differential equations, the distribution of armies over the battlefield must be considered. Four different modes of attack are introduced, generalizing Lanchester’s equations for area fire and for direct fire. The effect of the distribution of forces and their movement on the outcome is considered, and numerical simulations given.
doi_str_mv 10.1016/j.camwa.2007.01.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29963718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122107000557</els_id><sourcerecordid>1082189984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-87b47bc639247474bbc738a22e50bfad7838d757d8d5aeff1fb0bc4d8b7f9fff3</originalsourceid><addsrcrecordid>eNqNkM1KAzEQx4MoWKtP4GVP4sGt-djdJAcPUvyCghc9h3xMaEp3t022ijdfw9fzSUyt5yIzMDD8_sPwQ-ic4AnBpLleTKxu3_WEYswnmORmB2hEBGclbxpxiEZYSFESSskxOklpgTGuGMUjdDXTnZ1DGiB-f36lAtYbPYS-S0XoimEeAQoXWujSdneKjrxeJjj7m2P0en_3Mn0sZ88PT9PbWWmrqh5KwU3FjW2YpBXPZYzlTGhKocbGa8cFE47X3AlXa_CeeIONrZww3EvvPRuji93dVezXm_ycakOysFzqDvpNUlTKhnEiMni5FyRYUCIF483_UCGlqDLKdqiNfUoRvFrF0Or4kSG19a0W6te32vpWmORmOXWzS0E28xYgqmQDdBZciGAH5fqwN_8DSZGKSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082189984</pqid></control><display><type>article</type><title>Lanchester’s equations in three dimensions</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Spradlin, Christina ; Spradlin, Greg</creator><creatorcontrib>Spradlin, Christina ; Spradlin, Greg</creatorcontrib><description>This paper generalizes Lanchester’s equations of warfare to partial differential equations involving time and two spatial variables. Unlike in Lanchester’s original ordinary differential equations, the distribution of armies over the battlefield must be considered. Four different modes of attack are introduced, generalizing Lanchester’s equations for area fire and for direct fire. The effect of the distribution of forces and their movement on the outcome is considered, and numerical simulations given.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2007.01.013</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Area fire ; Battlefield simulation ; Computer simulation ; Differential equations ; Direct fire ; Fires ; Lanchester’s equations ; Mathematical analysis ; Mathematical models ; Reaction–diffusion equations ; Stress concentration ; Three dimensional ; Warfare</subject><ispartof>Computers &amp; mathematics with applications (1987), 2007-04, Vol.53 (7), p.999-1011</ispartof><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-87b47bc639247474bbc738a22e50bfad7838d757d8d5aeff1fb0bc4d8b7f9fff3</citedby><cites>FETCH-LOGICAL-c445t-87b47bc639247474bbc738a22e50bfad7838d757d8d5aeff1fb0bc4d8b7f9fff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2007.01.013$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Spradlin, Christina</creatorcontrib><creatorcontrib>Spradlin, Greg</creatorcontrib><title>Lanchester’s equations in three dimensions</title><title>Computers &amp; mathematics with applications (1987)</title><description>This paper generalizes Lanchester’s equations of warfare to partial differential equations involving time and two spatial variables. Unlike in Lanchester’s original ordinary differential equations, the distribution of armies over the battlefield must be considered. Four different modes of attack are introduced, generalizing Lanchester’s equations for area fire and for direct fire. The effect of the distribution of forces and their movement on the outcome is considered, and numerical simulations given.</description><subject>Area fire</subject><subject>Battlefield simulation</subject><subject>Computer simulation</subject><subject>Differential equations</subject><subject>Direct fire</subject><subject>Fires</subject><subject>Lanchester’s equations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Reaction–diffusion equations</subject><subject>Stress concentration</subject><subject>Three dimensional</subject><subject>Warfare</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkM1KAzEQx4MoWKtP4GVP4sGt-djdJAcPUvyCghc9h3xMaEp3t022ijdfw9fzSUyt5yIzMDD8_sPwQ-ic4AnBpLleTKxu3_WEYswnmORmB2hEBGclbxpxiEZYSFESSskxOklpgTGuGMUjdDXTnZ1DGiB-f36lAtYbPYS-S0XoimEeAQoXWujSdneKjrxeJjj7m2P0en_3Mn0sZ88PT9PbWWmrqh5KwU3FjW2YpBXPZYzlTGhKocbGa8cFE47X3AlXa_CeeIONrZww3EvvPRuji93dVezXm_ycakOysFzqDvpNUlTKhnEiMni5FyRYUCIF483_UCGlqDLKdqiNfUoRvFrF0Or4kSG19a0W6te32vpWmORmOXWzS0E28xYgqmQDdBZciGAH5fqwN_8DSZGKSg</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Spradlin, Christina</creator><creator>Spradlin, Greg</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070401</creationdate><title>Lanchester’s equations in three dimensions</title><author>Spradlin, Christina ; Spradlin, Greg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-87b47bc639247474bbc738a22e50bfad7838d757d8d5aeff1fb0bc4d8b7f9fff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Area fire</topic><topic>Battlefield simulation</topic><topic>Computer simulation</topic><topic>Differential equations</topic><topic>Direct fire</topic><topic>Fires</topic><topic>Lanchester’s equations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Reaction–diffusion equations</topic><topic>Stress concentration</topic><topic>Three dimensional</topic><topic>Warfare</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spradlin, Christina</creatorcontrib><creatorcontrib>Spradlin, Greg</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spradlin, Christina</au><au>Spradlin, Greg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lanchester’s equations in three dimensions</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>53</volume><issue>7</issue><spage>999</spage><epage>1011</epage><pages>999-1011</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>This paper generalizes Lanchester’s equations of warfare to partial differential equations involving time and two spatial variables. Unlike in Lanchester’s original ordinary differential equations, the distribution of armies over the battlefield must be considered. Four different modes of attack are introduced, generalizing Lanchester’s equations for area fire and for direct fire. The effect of the distribution of forces and their movement on the outcome is considered, and numerical simulations given.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2007.01.013</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2007-04, Vol.53 (7), p.999-1011
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_29963718
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Area fire
Battlefield simulation
Computer simulation
Differential equations
Direct fire
Fires
Lanchester’s equations
Mathematical analysis
Mathematical models
Reaction–diffusion equations
Stress concentration
Three dimensional
Warfare
title Lanchester’s equations in three dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lanchester%E2%80%99s%20equations%20in%20three%20dimensions&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Spradlin,%20Christina&rft.date=2007-04-01&rft.volume=53&rft.issue=7&rft.spage=999&rft.epage=1011&rft.pages=999-1011&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2007.01.013&rft_dat=%3Cproquest_cross%3E1082189984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082189984&rft_id=info:pmid/&rft_els_id=S0898122107000557&rfr_iscdi=true