Lanchester’s equations in three dimensions
This paper generalizes Lanchester’s equations of warfare to partial differential equations involving time and two spatial variables. Unlike in Lanchester’s original ordinary differential equations, the distribution of armies over the battlefield must be considered. Four different modes of attack are...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2007-04, Vol.53 (7), p.999-1011 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1011 |
---|---|
container_issue | 7 |
container_start_page | 999 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 53 |
creator | Spradlin, Christina Spradlin, Greg |
description | This paper generalizes Lanchester’s equations of warfare to partial differential equations involving time and two spatial variables. Unlike in Lanchester’s original ordinary differential equations, the distribution of armies over the battlefield must be considered. Four different modes of attack are introduced, generalizing Lanchester’s equations for area fire and for direct fire. The effect of the distribution of forces and their movement on the outcome is considered, and numerical simulations given. |
doi_str_mv | 10.1016/j.camwa.2007.01.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29963718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122107000557</els_id><sourcerecordid>1082189984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-87b47bc639247474bbc738a22e50bfad7838d757d8d5aeff1fb0bc4d8b7f9fff3</originalsourceid><addsrcrecordid>eNqNkM1KAzEQx4MoWKtP4GVP4sGt-djdJAcPUvyCghc9h3xMaEp3t022ijdfw9fzSUyt5yIzMDD8_sPwQ-ic4AnBpLleTKxu3_WEYswnmORmB2hEBGclbxpxiEZYSFESSskxOklpgTGuGMUjdDXTnZ1DGiB-f36lAtYbPYS-S0XoimEeAQoXWujSdneKjrxeJjj7m2P0en_3Mn0sZ88PT9PbWWmrqh5KwU3FjW2YpBXPZYzlTGhKocbGa8cFE47X3AlXa_CeeIONrZww3EvvPRuji93dVezXm_ycakOysFzqDvpNUlTKhnEiMni5FyRYUCIF483_UCGlqDLKdqiNfUoRvFrF0Or4kSG19a0W6te32vpWmORmOXWzS0E28xYgqmQDdBZciGAH5fqwN_8DSZGKSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082189984</pqid></control><display><type>article</type><title>Lanchester’s equations in three dimensions</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Spradlin, Christina ; Spradlin, Greg</creator><creatorcontrib>Spradlin, Christina ; Spradlin, Greg</creatorcontrib><description>This paper generalizes Lanchester’s equations of warfare to partial differential equations involving time and two spatial variables. Unlike in Lanchester’s original ordinary differential equations, the distribution of armies over the battlefield must be considered. Four different modes of attack are introduced, generalizing Lanchester’s equations for area fire and for direct fire. The effect of the distribution of forces and their movement on the outcome is considered, and numerical simulations given.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2007.01.013</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Area fire ; Battlefield simulation ; Computer simulation ; Differential equations ; Direct fire ; Fires ; Lanchester’s equations ; Mathematical analysis ; Mathematical models ; Reaction–diffusion equations ; Stress concentration ; Three dimensional ; Warfare</subject><ispartof>Computers & mathematics with applications (1987), 2007-04, Vol.53 (7), p.999-1011</ispartof><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-87b47bc639247474bbc738a22e50bfad7838d757d8d5aeff1fb0bc4d8b7f9fff3</citedby><cites>FETCH-LOGICAL-c445t-87b47bc639247474bbc738a22e50bfad7838d757d8d5aeff1fb0bc4d8b7f9fff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2007.01.013$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Spradlin, Christina</creatorcontrib><creatorcontrib>Spradlin, Greg</creatorcontrib><title>Lanchester’s equations in three dimensions</title><title>Computers & mathematics with applications (1987)</title><description>This paper generalizes Lanchester’s equations of warfare to partial differential equations involving time and two spatial variables. Unlike in Lanchester’s original ordinary differential equations, the distribution of armies over the battlefield must be considered. Four different modes of attack are introduced, generalizing Lanchester’s equations for area fire and for direct fire. The effect of the distribution of forces and their movement on the outcome is considered, and numerical simulations given.</description><subject>Area fire</subject><subject>Battlefield simulation</subject><subject>Computer simulation</subject><subject>Differential equations</subject><subject>Direct fire</subject><subject>Fires</subject><subject>Lanchester’s equations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Reaction–diffusion equations</subject><subject>Stress concentration</subject><subject>Three dimensional</subject><subject>Warfare</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkM1KAzEQx4MoWKtP4GVP4sGt-djdJAcPUvyCghc9h3xMaEp3t022ijdfw9fzSUyt5yIzMDD8_sPwQ-ic4AnBpLleTKxu3_WEYswnmORmB2hEBGclbxpxiEZYSFESSskxOklpgTGuGMUjdDXTnZ1DGiB-f36lAtYbPYS-S0XoimEeAQoXWujSdneKjrxeJjj7m2P0en_3Mn0sZ88PT9PbWWmrqh5KwU3FjW2YpBXPZYzlTGhKocbGa8cFE47X3AlXa_CeeIONrZww3EvvPRuji93dVezXm_ycakOysFzqDvpNUlTKhnEiMni5FyRYUCIF483_UCGlqDLKdqiNfUoRvFrF0Or4kSG19a0W6te32vpWmORmOXWzS0E28xYgqmQDdBZciGAH5fqwN_8DSZGKSg</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Spradlin, Christina</creator><creator>Spradlin, Greg</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070401</creationdate><title>Lanchester’s equations in three dimensions</title><author>Spradlin, Christina ; Spradlin, Greg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-87b47bc639247474bbc738a22e50bfad7838d757d8d5aeff1fb0bc4d8b7f9fff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Area fire</topic><topic>Battlefield simulation</topic><topic>Computer simulation</topic><topic>Differential equations</topic><topic>Direct fire</topic><topic>Fires</topic><topic>Lanchester’s equations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Reaction–diffusion equations</topic><topic>Stress concentration</topic><topic>Three dimensional</topic><topic>Warfare</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spradlin, Christina</creatorcontrib><creatorcontrib>Spradlin, Greg</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spradlin, Christina</au><au>Spradlin, Greg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lanchester’s equations in three dimensions</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>53</volume><issue>7</issue><spage>999</spage><epage>1011</epage><pages>999-1011</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>This paper generalizes Lanchester’s equations of warfare to partial differential equations involving time and two spatial variables. Unlike in Lanchester’s original ordinary differential equations, the distribution of armies over the battlefield must be considered. Four different modes of attack are introduced, generalizing Lanchester’s equations for area fire and for direct fire. The effect of the distribution of forces and their movement on the outcome is considered, and numerical simulations given.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2007.01.013</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2007-04, Vol.53 (7), p.999-1011 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_miscellaneous_29963718 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Area fire Battlefield simulation Computer simulation Differential equations Direct fire Fires Lanchester’s equations Mathematical analysis Mathematical models Reaction–diffusion equations Stress concentration Three dimensional Warfare |
title | Lanchester’s equations in three dimensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lanchester%E2%80%99s%20equations%20in%20three%20dimensions&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Spradlin,%20Christina&rft.date=2007-04-01&rft.volume=53&rft.issue=7&rft.spage=999&rft.epage=1011&rft.pages=999-1011&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2007.01.013&rft_dat=%3Cproquest_cross%3E1082189984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082189984&rft_id=info:pmid/&rft_els_id=S0898122107000557&rfr_iscdi=true |