Autotrophic denitrification for combined hydrogen sulfide removal from biogas and post-denitrification

In this paper we describe an alternative flow-chart for full treatment of wastewaters rich in organic substrates, ammonia (or organic nitrogen), and sulfate, such as those generated in fish cannery industries. Biogas generated during anaerobic pretreatment of these wastewaters is rich in hydrogen su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2002-01, Vol.45 (10), p.349-356
Hauptverfasser: KLEEREBEZEM, R, MENDEZ, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 356
container_issue 10
container_start_page 349
container_title Water science and technology
container_volume 45
creator KLEEREBEZEM, R
MENDEZ, R
description In this paper we describe an alternative flow-chart for full treatment of wastewaters rich in organic substrates, ammonia (or organic nitrogen), and sulfate, such as those generated in fish cannery industries. Biogas generated during anaerobic pretreatment of these wastewaters is rich in hydrogen sulfide that needs to be removed to enable application of the biogas. Nitrogen elimination is traditionally achieved by subsequent nitrification and denitrification of the effluent of the anaerobic reactor. Alternatively, the hydrogen sulfide in the biogas can be applied as an electron donor in an autotrophic post-denitrification step. In order to study whether sufficient hydrogen sulfide containing biogas for denitrification was produced in the anaerobic reactor, the biogas composition as a function of the anaerobic reactor-pH was estimated based on a typical wastewater composition and chemical equilibrium equations. It is demonstrated that typical sulfate and nitrogen concentrations in fish cannery wastewater are highly appropriate for application of autotrophic post-denitrification. A literature review furthermore suggested that the kinetic parameters for autotrophic denitrification by Thiobacillus denitrificans represent no bottleneck for its application. Initial experimental studies in fixed-film reactors were conducted with sodium sulfide and nitrate as an electron donor-acceptor couple. The results revealed that only moderate volumetric treatment capacities (< 1 g-NO3- N l(-1) day(-1)) could be achieved. Mass balances suggested that incomplete sulfide oxidation to elemental sulfur occurred, limiting biomass retention and the treatment capacity of the reactor. Future research should clarify the questions concerning product formation from sulfide oxidation.
doi_str_mv 10.2166/wst.2002.0368
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29958519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>14634724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-c3be37e549e2329a09ffeed6fb31d43a04b706f933d437a504561757a160e27d3</originalsourceid><addsrcrecordid>eNqN0s1LHDEYx_HQWupqe-y1BEp7m22SJ69HkVYLgpf2PGTyopGZyTaZsfjfN4sLghc9hcCH3-Hhi9AnSraMSvn9X122jBC2JSD1G7ShxsjOKGBv0QnVHMBwqs0R2hCmoKOMwTE6qfWOEKKAk_fomDKqtZBmg-LZuuSl5N1tctiHOS0lxeTskvKMYy7Y5WlIc_D49sGXfBNmXNcxJh9wCVO-tyOOJU94SPnGVmxnj3e5Lt2zqQ_oXbRjDR8P7yn68_PH7_PL7ur64tf52VXnhNRL52AIoILgJjBgxhITYwhexgGo52AJHxSR0QC0n7KCcCGpEspSSQJTHk7Rt8fdXcl_11CXfkrVhXG0c8hr7ZkxQgtqXgGVksq8AlJqlFb6RUiN1kaAfBlyCVwx3uCXZ_Aur2Vu92tjHDhjWoqmukflSq61hNjvSppseegp6fe99K2Xft9Lv--l-c-H1XWYgn_ShyYa-HoAtjo7xmJnl-qTa3ERoyn8B8QPxkI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943422865</pqid></control><display><type>article</type><title>Autotrophic denitrification for combined hydrogen sulfide removal from biogas and post-denitrification</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>KLEEREBEZEM, R ; MENDEZ, R</creator><contributor>Van Lier, J ; Lubberding, H</contributor><creatorcontrib>KLEEREBEZEM, R ; MENDEZ, R ; Van Lier, J ; Lubberding, H</creatorcontrib><description>In this paper we describe an alternative flow-chart for full treatment of wastewaters rich in organic substrates, ammonia (or organic nitrogen), and sulfate, such as those generated in fish cannery industries. Biogas generated during anaerobic pretreatment of these wastewaters is rich in hydrogen sulfide that needs to be removed to enable application of the biogas. Nitrogen elimination is traditionally achieved by subsequent nitrification and denitrification of the effluent of the anaerobic reactor. Alternatively, the hydrogen sulfide in the biogas can be applied as an electron donor in an autotrophic post-denitrification step. In order to study whether sufficient hydrogen sulfide containing biogas for denitrification was produced in the anaerobic reactor, the biogas composition as a function of the anaerobic reactor-pH was estimated based on a typical wastewater composition and chemical equilibrium equations. It is demonstrated that typical sulfate and nitrogen concentrations in fish cannery wastewater are highly appropriate for application of autotrophic post-denitrification. A literature review furthermore suggested that the kinetic parameters for autotrophic denitrification by Thiobacillus denitrificans represent no bottleneck for its application. Initial experimental studies in fixed-film reactors were conducted with sodium sulfide and nitrate as an electron donor-acceptor couple. The results revealed that only moderate volumetric treatment capacities (&lt; 1 g-NO3- N l(-1) day(-1)) could be achieved. Mass balances suggested that incomplete sulfide oxidation to elemental sulfur occurred, limiting biomass retention and the treatment capacity of the reactor. Future research should clarify the questions concerning product formation from sulfide oxidation.</description><identifier>ISSN: 0273-1223</identifier><identifier>ISBN: 1843394189</identifier><identifier>ISBN: 9781843394181</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2002.0368</identifier><identifier>PMID: 12188569</identifier><identifier>CODEN: WSTED4</identifier><language>eng</language><publisher>Oxford: Pergamon Press</publisher><subject>Air Pollutants - analysis ; Ammonia ; Applied sciences ; Bacteria, Anaerobic - physiology ; Biofilms ; Biogas ; Biological and medical sciences ; Biological treatment of waters ; Bioreactors ; Biotechnology ; Canning industry wastewaters ; Capacity ; Chemical equilibrium ; Denitrification ; Environment and pollution ; Equilibrium equations ; Exact sciences and technology ; Fish ; Food Industry ; Fundamental and applied biological sciences. Psychology ; Gases ; Hydrogen ; Hydrogen sulfide ; Hydrogen Sulfide - chemistry ; Hydrogen sulphide ; Industrial applications and implications. Economical aspects ; Industrial Waste ; Industrial wastewaters ; Industry ; Kinetics ; Literature reviews ; Mathematical models ; Models, Theoretical ; Nitrates ; Nitrification ; Nitrogen ; Nitrogen - metabolism ; Organic nitrogen ; Oxidation ; Oxidation-Reduction ; Pollution ; Pretreatment ; Reactors ; Removal ; Sodium ; Sodium sulfide ; Substrates ; Sulfates ; Sulfates - analysis ; Sulfates - chemistry ; Sulfur ; Sulphides ; Sulphur ; Thiobacillus - physiology ; Thiobacillus denitrificans ; Waste Disposal, Fluid - methods ; Wastewater ; Wastewater composition ; Wastewater treatment ; Wastewaters ; Water treatment and pollution</subject><ispartof>Water science and technology, 2002-01, Vol.45 (10), p.349-356</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright IWA Publishing May 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-c3be37e549e2329a09ffeed6fb31d43a04b706f933d437a504561757a160e27d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14180981$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12188569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Van Lier, J</contributor><contributor>Lubberding, H</contributor><creatorcontrib>KLEEREBEZEM, R</creatorcontrib><creatorcontrib>MENDEZ, R</creatorcontrib><title>Autotrophic denitrification for combined hydrogen sulfide removal from biogas and post-denitrification</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>In this paper we describe an alternative flow-chart for full treatment of wastewaters rich in organic substrates, ammonia (or organic nitrogen), and sulfate, such as those generated in fish cannery industries. Biogas generated during anaerobic pretreatment of these wastewaters is rich in hydrogen sulfide that needs to be removed to enable application of the biogas. Nitrogen elimination is traditionally achieved by subsequent nitrification and denitrification of the effluent of the anaerobic reactor. Alternatively, the hydrogen sulfide in the biogas can be applied as an electron donor in an autotrophic post-denitrification step. In order to study whether sufficient hydrogen sulfide containing biogas for denitrification was produced in the anaerobic reactor, the biogas composition as a function of the anaerobic reactor-pH was estimated based on a typical wastewater composition and chemical equilibrium equations. It is demonstrated that typical sulfate and nitrogen concentrations in fish cannery wastewater are highly appropriate for application of autotrophic post-denitrification. A literature review furthermore suggested that the kinetic parameters for autotrophic denitrification by Thiobacillus denitrificans represent no bottleneck for its application. Initial experimental studies in fixed-film reactors were conducted with sodium sulfide and nitrate as an electron donor-acceptor couple. The results revealed that only moderate volumetric treatment capacities (&lt; 1 g-NO3- N l(-1) day(-1)) could be achieved. Mass balances suggested that incomplete sulfide oxidation to elemental sulfur occurred, limiting biomass retention and the treatment capacity of the reactor. Future research should clarify the questions concerning product formation from sulfide oxidation.</description><subject>Air Pollutants - analysis</subject><subject>Ammonia</subject><subject>Applied sciences</subject><subject>Bacteria, Anaerobic - physiology</subject><subject>Biofilms</subject><subject>Biogas</subject><subject>Biological and medical sciences</subject><subject>Biological treatment of waters</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Canning industry wastewaters</subject><subject>Capacity</subject><subject>Chemical equilibrium</subject><subject>Denitrification</subject><subject>Environment and pollution</subject><subject>Equilibrium equations</subject><subject>Exact sciences and technology</subject><subject>Fish</subject><subject>Food Industry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gases</subject><subject>Hydrogen</subject><subject>Hydrogen sulfide</subject><subject>Hydrogen Sulfide - chemistry</subject><subject>Hydrogen sulphide</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Industrial Waste</subject><subject>Industrial wastewaters</subject><subject>Industry</subject><subject>Kinetics</subject><subject>Literature reviews</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Nitrates</subject><subject>Nitrification</subject><subject>Nitrogen</subject><subject>Nitrogen - metabolism</subject><subject>Organic nitrogen</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Pollution</subject><subject>Pretreatment</subject><subject>Reactors</subject><subject>Removal</subject><subject>Sodium</subject><subject>Sodium sulfide</subject><subject>Substrates</subject><subject>Sulfates</subject><subject>Sulfates - analysis</subject><subject>Sulfates - chemistry</subject><subject>Sulfur</subject><subject>Sulphides</subject><subject>Sulphur</subject><subject>Thiobacillus - physiology</subject><subject>Thiobacillus denitrificans</subject><subject>Waste Disposal, Fluid - methods</subject><subject>Wastewater</subject><subject>Wastewater composition</subject><subject>Wastewater treatment</subject><subject>Wastewaters</subject><subject>Water treatment and pollution</subject><issn>0273-1223</issn><issn>1996-9732</issn><isbn>1843394189</isbn><isbn>9781843394181</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqN0s1LHDEYx_HQWupqe-y1BEp7m22SJ69HkVYLgpf2PGTyopGZyTaZsfjfN4sLghc9hcCH3-Hhi9AnSraMSvn9X122jBC2JSD1G7ShxsjOKGBv0QnVHMBwqs0R2hCmoKOMwTE6qfWOEKKAk_fomDKqtZBmg-LZuuSl5N1tctiHOS0lxeTskvKMYy7Y5WlIc_D49sGXfBNmXNcxJh9wCVO-tyOOJU94SPnGVmxnj3e5Lt2zqQ_oXbRjDR8P7yn68_PH7_PL7ur64tf52VXnhNRL52AIoILgJjBgxhITYwhexgGo52AJHxSR0QC0n7KCcCGpEspSSQJTHk7Rt8fdXcl_11CXfkrVhXG0c8hr7ZkxQgtqXgGVksq8AlJqlFb6RUiN1kaAfBlyCVwx3uCXZ_Aur2Vu92tjHDhjWoqmukflSq61hNjvSppseegp6fe99K2Xft9Lv--l-c-H1XWYgn_ShyYa-HoAtjo7xmJnl-qTa3ERoyn8B8QPxkI</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>KLEEREBEZEM, R</creator><creator>MENDEZ, R</creator><general>Pergamon Press</general><general>IWA Publishing</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7ST</scope><scope>SOI</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7TB</scope><scope>KR7</scope></search><sort><creationdate>20020101</creationdate><title>Autotrophic denitrification for combined hydrogen sulfide removal from biogas and post-denitrification</title><author>KLEEREBEZEM, R ; MENDEZ, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-c3be37e549e2329a09ffeed6fb31d43a04b706f933d437a504561757a160e27d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Air Pollutants - analysis</topic><topic>Ammonia</topic><topic>Applied sciences</topic><topic>Bacteria, Anaerobic - physiology</topic><topic>Biofilms</topic><topic>Biogas</topic><topic>Biological and medical sciences</topic><topic>Biological treatment of waters</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Canning industry wastewaters</topic><topic>Capacity</topic><topic>Chemical equilibrium</topic><topic>Denitrification</topic><topic>Environment and pollution</topic><topic>Equilibrium equations</topic><topic>Exact sciences and technology</topic><topic>Fish</topic><topic>Food Industry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gases</topic><topic>Hydrogen</topic><topic>Hydrogen sulfide</topic><topic>Hydrogen Sulfide - chemistry</topic><topic>Hydrogen sulphide</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Industrial Waste</topic><topic>Industrial wastewaters</topic><topic>Industry</topic><topic>Kinetics</topic><topic>Literature reviews</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Nitrates</topic><topic>Nitrification</topic><topic>Nitrogen</topic><topic>Nitrogen - metabolism</topic><topic>Organic nitrogen</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Pollution</topic><topic>Pretreatment</topic><topic>Reactors</topic><topic>Removal</topic><topic>Sodium</topic><topic>Sodium sulfide</topic><topic>Substrates</topic><topic>Sulfates</topic><topic>Sulfates - analysis</topic><topic>Sulfates - chemistry</topic><topic>Sulfur</topic><topic>Sulphides</topic><topic>Sulphur</topic><topic>Thiobacillus - physiology</topic><topic>Thiobacillus denitrificans</topic><topic>Waste Disposal, Fluid - methods</topic><topic>Wastewater</topic><topic>Wastewater composition</topic><topic>Wastewater treatment</topic><topic>Wastewaters</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KLEEREBEZEM, R</creatorcontrib><creatorcontrib>MENDEZ, R</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Civil Engineering Abstracts</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KLEEREBEZEM, R</au><au>MENDEZ, R</au><au>Van Lier, J</au><au>Lubberding, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autotrophic denitrification for combined hydrogen sulfide removal from biogas and post-denitrification</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2002-01-01</date><risdate>2002</risdate><volume>45</volume><issue>10</issue><spage>349</spage><epage>356</epage><pages>349-356</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><isbn>1843394189</isbn><isbn>9781843394181</isbn><coden>WSTED4</coden><abstract>In this paper we describe an alternative flow-chart for full treatment of wastewaters rich in organic substrates, ammonia (or organic nitrogen), and sulfate, such as those generated in fish cannery industries. Biogas generated during anaerobic pretreatment of these wastewaters is rich in hydrogen sulfide that needs to be removed to enable application of the biogas. Nitrogen elimination is traditionally achieved by subsequent nitrification and denitrification of the effluent of the anaerobic reactor. Alternatively, the hydrogen sulfide in the biogas can be applied as an electron donor in an autotrophic post-denitrification step. In order to study whether sufficient hydrogen sulfide containing biogas for denitrification was produced in the anaerobic reactor, the biogas composition as a function of the anaerobic reactor-pH was estimated based on a typical wastewater composition and chemical equilibrium equations. It is demonstrated that typical sulfate and nitrogen concentrations in fish cannery wastewater are highly appropriate for application of autotrophic post-denitrification. A literature review furthermore suggested that the kinetic parameters for autotrophic denitrification by Thiobacillus denitrificans represent no bottleneck for its application. Initial experimental studies in fixed-film reactors were conducted with sodium sulfide and nitrate as an electron donor-acceptor couple. The results revealed that only moderate volumetric treatment capacities (&lt; 1 g-NO3- N l(-1) day(-1)) could be achieved. Mass balances suggested that incomplete sulfide oxidation to elemental sulfur occurred, limiting biomass retention and the treatment capacity of the reactor. Future research should clarify the questions concerning product formation from sulfide oxidation.</abstract><cop>Oxford</cop><pub>Pergamon Press</pub><pmid>12188569</pmid><doi>10.2166/wst.2002.0368</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0273-1223
ispartof Water science and technology, 2002-01, Vol.45 (10), p.349-356
issn 0273-1223
1996-9732
language eng
recordid cdi_proquest_miscellaneous_29958519
source MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Air Pollutants - analysis
Ammonia
Applied sciences
Bacteria, Anaerobic - physiology
Biofilms
Biogas
Biological and medical sciences
Biological treatment of waters
Bioreactors
Biotechnology
Canning industry wastewaters
Capacity
Chemical equilibrium
Denitrification
Environment and pollution
Equilibrium equations
Exact sciences and technology
Fish
Food Industry
Fundamental and applied biological sciences. Psychology
Gases
Hydrogen
Hydrogen sulfide
Hydrogen Sulfide - chemistry
Hydrogen sulphide
Industrial applications and implications. Economical aspects
Industrial Waste
Industrial wastewaters
Industry
Kinetics
Literature reviews
Mathematical models
Models, Theoretical
Nitrates
Nitrification
Nitrogen
Nitrogen - metabolism
Organic nitrogen
Oxidation
Oxidation-Reduction
Pollution
Pretreatment
Reactors
Removal
Sodium
Sodium sulfide
Substrates
Sulfates
Sulfates - analysis
Sulfates - chemistry
Sulfur
Sulphides
Sulphur
Thiobacillus - physiology
Thiobacillus denitrificans
Waste Disposal, Fluid - methods
Wastewater
Wastewater composition
Wastewater treatment
Wastewaters
Water treatment and pollution
title Autotrophic denitrification for combined hydrogen sulfide removal from biogas and post-denitrification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autotrophic%20denitrification%20for%20combined%20hydrogen%20sulfide%20removal%20from%20biogas%20and%20post-denitrification&rft.jtitle=Water%20science%20and%20technology&rft.au=KLEEREBEZEM,%20R&rft.date=2002-01-01&rft.volume=45&rft.issue=10&rft.spage=349&rft.epage=356&rft.pages=349-356&rft.issn=0273-1223&rft.eissn=1996-9732&rft.isbn=1843394189&rft.isbn_list=9781843394181&rft.coden=WSTED4&rft_id=info:doi/10.2166/wst.2002.0368&rft_dat=%3Cproquest_cross%3E14634724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943422865&rft_id=info:pmid/12188569&rfr_iscdi=true