Turbulence Measurements of Separate-Flow Nozzles with Pylon Interaction Using Particle Image Velocimetry

Particle image velocimetry measurements for separate-flow nozzles with bypass ratio five have recently been obtained in the NASA Langley Jet Noise Laboratory. The six configurations tested include a baseline configuration with round core and fan nozzles, an eight-chevron core nozzle at two different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2007-06, Vol.45 (6), p.1281-1289
Hauptverfasser: Doty, Michael J, Henderson, Brenda S, Kinzie, Kevin W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1289
container_issue 6
container_start_page 1281
container_title AIAA journal
container_volume 45
creator Doty, Michael J
Henderson, Brenda S
Kinzie, Kevin W
description Particle image velocimetry measurements for separate-flow nozzles with bypass ratio five have recently been obtained in the NASA Langley Jet Noise Laboratory. The six configurations tested include a baseline configuration with round core and fan nozzles, an eight-chevron core nozzle at two different clocking positions, and repeats of these configurations with a pylon included. One run condition representative of takeoff was investigated for all cases. The unsteady flowfield measurements complement recent computational, acoustic, and mean flowfield studies performed at NASA Langley for the same nozzle configurations and run condition. The baseline configuration measurements show good agreement with existing mean and turbulent flowfield data. Nonetheless, the baseline configuration turbulence profile indicates an asymmetric flowfield, despite careful attention to concentricity. The presence of the pylon increases the upper shear layer turbulence levels while simultaneously decreasing the turbulence levels in the lower shear layer. In addition, a slightly shorter potential core length is observed with the addition of the pylon. Finally, comparisons of computational results with current measurements are favorable for mean flow, slightly overpredicted for Reynolds shear stress, and underpredicted for Reynolds normal stress components. [PUBLICATION ABSTRACT]
doi_str_mv 10.2514/1.20420
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29957301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1279939641</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-5c1890ca427c315ca7a3116d203dd977d6357f97cb0ad8e2684d277782fd81063</originalsourceid><addsrcrecordid>eNpt0F1LHDEUBuBQWujWin8hlFbxYmw-ZiaZSxE_FqwV_KB34Zg5o5HMZE0y6PrrO7oLgniVE3h4z-ElZIuzPVHx8jffE6wU7BOZ8UrKQurq32cyY4zxgpeV-Eq-pXQ__YTSfEbuLsd4M3ocLNI_CGmM2OOQEw0dvcAFRMhYHPnwSM_C87PHRB9dvqPnSx8GOh8yRrDZTfNVcsMtPYeYnfVI5z3cIr1GH6zrMcfld_KlA59wc_1ukKujw8uDk-L07_H8YP-0AKnqXFSW64ZZKIWyklcWFEjO61Yw2baNUm0tK9U1yt4waDWKWpetUEpp0bWas1pukO1V7iKGhxFTNr1LFr2HAcOYjGiaSknGJ_jjHbwPYxym24yYmhMN02JCOytkY0gpYmcW0fUQl4Yz81K34ea17kn-WsdBsuC7CIN16Y1rzUutXhJ3Vw4cwNvKdYxZtJ3pRu8zPuXJ_vzQvlv9H0aUmAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215329082</pqid></control><display><type>article</type><title>Turbulence Measurements of Separate-Flow Nozzles with Pylon Interaction Using Particle Image Velocimetry</title><source>Alma/SFX Local Collection</source><creator>Doty, Michael J ; Henderson, Brenda S ; Kinzie, Kevin W</creator><creatorcontrib>Doty, Michael J ; Henderson, Brenda S ; Kinzie, Kevin W</creatorcontrib><description>Particle image velocimetry measurements for separate-flow nozzles with bypass ratio five have recently been obtained in the NASA Langley Jet Noise Laboratory. The six configurations tested include a baseline configuration with round core and fan nozzles, an eight-chevron core nozzle at two different clocking positions, and repeats of these configurations with a pylon included. One run condition representative of takeoff was investigated for all cases. The unsteady flowfield measurements complement recent computational, acoustic, and mean flowfield studies performed at NASA Langley for the same nozzle configurations and run condition. The baseline configuration measurements show good agreement with existing mean and turbulent flowfield data. Nonetheless, the baseline configuration turbulence profile indicates an asymmetric flowfield, despite careful attention to concentricity. The presence of the pylon increases the upper shear layer turbulence levels while simultaneously decreasing the turbulence levels in the lower shear layer. In addition, a slightly shorter potential core length is observed with the addition of the pylon. Finally, comparisons of computational results with current measurements are favorable for mean flow, slightly overpredicted for Reynolds shear stress, and underpredicted for Reynolds normal stress components. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.20420</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Acoustics ; Aeroacoustics, atmospheric sound ; Aerodynamics ; Air flow ; Aircraft ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Instrumentation for fluid dynamics ; Measurement ; Noise (turbulence generated) ; Noise: its effects and control ; Nozzles ; Physics ; Turbulence ; Turbulent flows, convection, and heat transfer ; Velocity</subject><ispartof>AIAA journal, 2007-06, Vol.45 (6), p.1281-1289</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Jun 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-5c1890ca427c315ca7a3116d203dd977d6357f97cb0ad8e2684d277782fd81063</citedby><cites>FETCH-LOGICAL-a376t-5c1890ca427c315ca7a3116d203dd977d6357f97cb0ad8e2684d277782fd81063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18814872$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Doty, Michael J</creatorcontrib><creatorcontrib>Henderson, Brenda S</creatorcontrib><creatorcontrib>Kinzie, Kevin W</creatorcontrib><title>Turbulence Measurements of Separate-Flow Nozzles with Pylon Interaction Using Particle Image Velocimetry</title><title>AIAA journal</title><description>Particle image velocimetry measurements for separate-flow nozzles with bypass ratio five have recently been obtained in the NASA Langley Jet Noise Laboratory. The six configurations tested include a baseline configuration with round core and fan nozzles, an eight-chevron core nozzle at two different clocking positions, and repeats of these configurations with a pylon included. One run condition representative of takeoff was investigated for all cases. The unsteady flowfield measurements complement recent computational, acoustic, and mean flowfield studies performed at NASA Langley for the same nozzle configurations and run condition. The baseline configuration measurements show good agreement with existing mean and turbulent flowfield data. Nonetheless, the baseline configuration turbulence profile indicates an asymmetric flowfield, despite careful attention to concentricity. The presence of the pylon increases the upper shear layer turbulence levels while simultaneously decreasing the turbulence levels in the lower shear layer. In addition, a slightly shorter potential core length is observed with the addition of the pylon. Finally, comparisons of computational results with current measurements are favorable for mean flow, slightly overpredicted for Reynolds shear stress, and underpredicted for Reynolds normal stress components. [PUBLICATION ABSTRACT]</description><subject>Acoustics</subject><subject>Aeroacoustics, atmospheric sound</subject><subject>Aerodynamics</subject><subject>Air flow</subject><subject>Aircraft</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Instrumentation for fluid dynamics</subject><subject>Measurement</subject><subject>Noise (turbulence generated)</subject><subject>Noise: its effects and control</subject><subject>Nozzles</subject><subject>Physics</subject><subject>Turbulence</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Velocity</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpt0F1LHDEUBuBQWujWin8hlFbxYmw-ZiaZSxE_FqwV_KB34Zg5o5HMZE0y6PrrO7oLgniVE3h4z-ElZIuzPVHx8jffE6wU7BOZ8UrKQurq32cyY4zxgpeV-Eq-pXQ__YTSfEbuLsd4M3ocLNI_CGmM2OOQEw0dvcAFRMhYHPnwSM_C87PHRB9dvqPnSx8GOh8yRrDZTfNVcsMtPYeYnfVI5z3cIr1GH6zrMcfld_KlA59wc_1ukKujw8uDk-L07_H8YP-0AKnqXFSW64ZZKIWyklcWFEjO61Yw2baNUm0tK9U1yt4waDWKWpetUEpp0bWas1pukO1V7iKGhxFTNr1LFr2HAcOYjGiaSknGJ_jjHbwPYxym24yYmhMN02JCOytkY0gpYmcW0fUQl4Yz81K34ea17kn-WsdBsuC7CIN16Y1rzUutXhJ3Vw4cwNvKdYxZtJ3pRu8zPuXJ_vzQvlv9H0aUmAo</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Doty, Michael J</creator><creator>Henderson, Brenda S</creator><creator>Kinzie, Kevin W</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20070601</creationdate><title>Turbulence Measurements of Separate-Flow Nozzles with Pylon Interaction Using Particle Image Velocimetry</title><author>Doty, Michael J ; Henderson, Brenda S ; Kinzie, Kevin W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-5c1890ca427c315ca7a3116d203dd977d6357f97cb0ad8e2684d277782fd81063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Acoustics</topic><topic>Aeroacoustics, atmospheric sound</topic><topic>Aerodynamics</topic><topic>Air flow</topic><topic>Aircraft</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Instrumentation for fluid dynamics</topic><topic>Measurement</topic><topic>Noise (turbulence generated)</topic><topic>Noise: its effects and control</topic><topic>Nozzles</topic><topic>Physics</topic><topic>Turbulence</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doty, Michael J</creatorcontrib><creatorcontrib>Henderson, Brenda S</creatorcontrib><creatorcontrib>Kinzie, Kevin W</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doty, Michael J</au><au>Henderson, Brenda S</au><au>Kinzie, Kevin W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulence Measurements of Separate-Flow Nozzles with Pylon Interaction Using Particle Image Velocimetry</atitle><jtitle>AIAA journal</jtitle><date>2007-06-01</date><risdate>2007</risdate><volume>45</volume><issue>6</issue><spage>1281</spage><epage>1289</epage><pages>1281-1289</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>Particle image velocimetry measurements for separate-flow nozzles with bypass ratio five have recently been obtained in the NASA Langley Jet Noise Laboratory. The six configurations tested include a baseline configuration with round core and fan nozzles, an eight-chevron core nozzle at two different clocking positions, and repeats of these configurations with a pylon included. One run condition representative of takeoff was investigated for all cases. The unsteady flowfield measurements complement recent computational, acoustic, and mean flowfield studies performed at NASA Langley for the same nozzle configurations and run condition. The baseline configuration measurements show good agreement with existing mean and turbulent flowfield data. Nonetheless, the baseline configuration turbulence profile indicates an asymmetric flowfield, despite careful attention to concentricity. The presence of the pylon increases the upper shear layer turbulence levels while simultaneously decreasing the turbulence levels in the lower shear layer. In addition, a slightly shorter potential core length is observed with the addition of the pylon. Finally, comparisons of computational results with current measurements are favorable for mean flow, slightly overpredicted for Reynolds shear stress, and underpredicted for Reynolds normal stress components. [PUBLICATION ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.20420</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2007-06, Vol.45 (6), p.1281-1289
issn 0001-1452
1533-385X
language eng
recordid cdi_proquest_miscellaneous_29957301
source Alma/SFX Local Collection
subjects Acoustics
Aeroacoustics, atmospheric sound
Aerodynamics
Air flow
Aircraft
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Instrumentation for fluid dynamics
Measurement
Noise (turbulence generated)
Noise: its effects and control
Nozzles
Physics
Turbulence
Turbulent flows, convection, and heat transfer
Velocity
title Turbulence Measurements of Separate-Flow Nozzles with Pylon Interaction Using Particle Image Velocimetry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A08%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulence%20Measurements%20of%20Separate-Flow%20Nozzles%20with%20Pylon%20Interaction%20Using%20Particle%20Image%20Velocimetry&rft.jtitle=AIAA%20journal&rft.au=Doty,%20Michael%20J&rft.date=2007-06-01&rft.volume=45&rft.issue=6&rft.spage=1281&rft.epage=1289&rft.pages=1281-1289&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/1.20420&rft_dat=%3Cproquest_cross%3E1279939641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215329082&rft_id=info:pmid/&rfr_iscdi=true