Modeling and simulation of magnetic-shape-memory polymer composites

Composites of small magnetic-shape-memory (MSM) particles embedded in a polymer matrix have been proposed as an energy damping mechanism and as actuators. Compared to a single crystal bulk material, the production is simpler and more flexible, as both type of the polymer and geometry of the microstr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanics and physics of solids 2007-07, Vol.55 (7), p.1462-1486
Hauptverfasser: Conti, S., Lenz, M., Rumpf, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1486
container_issue 7
container_start_page 1462
container_title Journal of the mechanics and physics of solids
container_volume 55
creator Conti, S.
Lenz, M.
Rumpf, M.
description Composites of small magnetic-shape-memory (MSM) particles embedded in a polymer matrix have been proposed as an energy damping mechanism and as actuators. Compared to a single crystal bulk material, the production is simpler and more flexible, as both type of the polymer and geometry of the microstructure can be tuned. Compared to polycrystals, in composites the soft polymer matrix permits the active grains to deform to some extent independently; in particular the rigidity of grain boundaries arising from incompatible orientations is reduced. We study the magnetic-field-induced deformation of composites, on the basis of a continuous model incorporating elasticity and micromagnetism, in a reduced two-dimensional, plane-strain setting. The aim is to give conceptual guidance for the design of composite materials independent of the concrete macroscopic device. Thus, on the background of homogenization theory, we determine the macroscopic behavior by studying an affine-periodic cell problem. An energy descent algorithm is developed, whose main ingredients are a boundary element method for the computation of the elastic and magnetic field energies; and a combinatorial component reflecting the phase transition in the individual particles, which are assumed to be of single-domain type. Our numerical results demonstrate the behavior of the macroscopic material properties for different possible microstructures, and give suggestions for the optimization of the composite.
doi_str_mv 10.1016/j.jmps.2006.12.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29955123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022509607000142</els_id><sourcerecordid>29955123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-b3184eaca4569a85a93b15969337d67067beb479f817450aaa9c28e2c27072253</originalsourceid><addsrcrecordid>eNp9kD1PwzAURT2ARCn8AaZMbAnPdhzHEguq-JKKWGC2HOelOIrjYKdI_fekKjPTXe650j2E3FAoKNDqri96P6WCAVQFZQVAfUZWAIzlAlR1QS5T6gFAgKQrsnkLLQ5u3GVmbLPk_H4wswtjFrrMm92Is7N5-jIT5h59iIdsCsPBY8xs8FNIbsZ0Rc47MyS8_ss1-Xx6_Ni85Nv359fNwza3nNM5bzitSzTWlKJSphZG8YYKVSnOZVtJqGSDTSlVV1NZCjDGKMtqZJZJkIwJvia3p90phu89pll7lywOgxkx7JNmSglBGV-K7FS0MaQUsdNTdN7Eg6agj450r4-O9NGRpkwvjhbo_gThcuHHYdTJOhwtti6inXUb3H_4L7y4cfE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29955123</pqid></control><display><type>article</type><title>Modeling and simulation of magnetic-shape-memory polymer composites</title><source>Elsevier ScienceDirect Journals</source><creator>Conti, S. ; Lenz, M. ; Rumpf, M.</creator><creatorcontrib>Conti, S. ; Lenz, M. ; Rumpf, M.</creatorcontrib><description>Composites of small magnetic-shape-memory (MSM) particles embedded in a polymer matrix have been proposed as an energy damping mechanism and as actuators. Compared to a single crystal bulk material, the production is simpler and more flexible, as both type of the polymer and geometry of the microstructure can be tuned. Compared to polycrystals, in composites the soft polymer matrix permits the active grains to deform to some extent independently; in particular the rigidity of grain boundaries arising from incompatible orientations is reduced. We study the magnetic-field-induced deformation of composites, on the basis of a continuous model incorporating elasticity and micromagnetism, in a reduced two-dimensional, plane-strain setting. The aim is to give conceptual guidance for the design of composite materials independent of the concrete macroscopic device. Thus, on the background of homogenization theory, we determine the macroscopic behavior by studying an affine-periodic cell problem. An energy descent algorithm is developed, whose main ingredients are a boundary element method for the computation of the elastic and magnetic field energies; and a combinatorial component reflecting the phase transition in the individual particles, which are assumed to be of single-domain type. Our numerical results demonstrate the behavior of the macroscopic material properties for different possible microstructures, and give suggestions for the optimization of the composite.</description><identifier>ISSN: 0022-5096</identifier><identifier>DOI: 10.1016/j.jmps.2006.12.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Boundary elements ; Homogenization ; Magnetic shape memory</subject><ispartof>Journal of the mechanics and physics of solids, 2007-07, Vol.55 (7), p.1462-1486</ispartof><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-b3184eaca4569a85a93b15969337d67067beb479f817450aaa9c28e2c27072253</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022509607000142$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Conti, S.</creatorcontrib><creatorcontrib>Lenz, M.</creatorcontrib><creatorcontrib>Rumpf, M.</creatorcontrib><title>Modeling and simulation of magnetic-shape-memory polymer composites</title><title>Journal of the mechanics and physics of solids</title><description>Composites of small magnetic-shape-memory (MSM) particles embedded in a polymer matrix have been proposed as an energy damping mechanism and as actuators. Compared to a single crystal bulk material, the production is simpler and more flexible, as both type of the polymer and geometry of the microstructure can be tuned. Compared to polycrystals, in composites the soft polymer matrix permits the active grains to deform to some extent independently; in particular the rigidity of grain boundaries arising from incompatible orientations is reduced. We study the magnetic-field-induced deformation of composites, on the basis of a continuous model incorporating elasticity and micromagnetism, in a reduced two-dimensional, plane-strain setting. The aim is to give conceptual guidance for the design of composite materials independent of the concrete macroscopic device. Thus, on the background of homogenization theory, we determine the macroscopic behavior by studying an affine-periodic cell problem. An energy descent algorithm is developed, whose main ingredients are a boundary element method for the computation of the elastic and magnetic field energies; and a combinatorial component reflecting the phase transition in the individual particles, which are assumed to be of single-domain type. Our numerical results demonstrate the behavior of the macroscopic material properties for different possible microstructures, and give suggestions for the optimization of the composite.</description><subject>Boundary elements</subject><subject>Homogenization</subject><subject>Magnetic shape memory</subject><issn>0022-5096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURT2ARCn8AaZMbAnPdhzHEguq-JKKWGC2HOelOIrjYKdI_fekKjPTXe650j2E3FAoKNDqri96P6WCAVQFZQVAfUZWAIzlAlR1QS5T6gFAgKQrsnkLLQ5u3GVmbLPk_H4wswtjFrrMm92Is7N5-jIT5h59iIdsCsPBY8xs8FNIbsZ0Rc47MyS8_ss1-Xx6_Ni85Nv359fNwza3nNM5bzitSzTWlKJSphZG8YYKVSnOZVtJqGSDTSlVV1NZCjDGKMtqZJZJkIwJvia3p90phu89pll7lywOgxkx7JNmSglBGV-K7FS0MaQUsdNTdN7Eg6agj450r4-O9NGRpkwvjhbo_gThcuHHYdTJOhwtti6inXUb3H_4L7y4cfE</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Conti, S.</creator><creator>Lenz, M.</creator><creator>Rumpf, M.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20070701</creationdate><title>Modeling and simulation of magnetic-shape-memory polymer composites</title><author>Conti, S. ; Lenz, M. ; Rumpf, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-b3184eaca4569a85a93b15969337d67067beb479f817450aaa9c28e2c27072253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Boundary elements</topic><topic>Homogenization</topic><topic>Magnetic shape memory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conti, S.</creatorcontrib><creatorcontrib>Lenz, M.</creatorcontrib><creatorcontrib>Rumpf, M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the mechanics and physics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conti, S.</au><au>Lenz, M.</au><au>Rumpf, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and simulation of magnetic-shape-memory polymer composites</atitle><jtitle>Journal of the mechanics and physics of solids</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>55</volume><issue>7</issue><spage>1462</spage><epage>1486</epage><pages>1462-1486</pages><issn>0022-5096</issn><abstract>Composites of small magnetic-shape-memory (MSM) particles embedded in a polymer matrix have been proposed as an energy damping mechanism and as actuators. Compared to a single crystal bulk material, the production is simpler and more flexible, as both type of the polymer and geometry of the microstructure can be tuned. Compared to polycrystals, in composites the soft polymer matrix permits the active grains to deform to some extent independently; in particular the rigidity of grain boundaries arising from incompatible orientations is reduced. We study the magnetic-field-induced deformation of composites, on the basis of a continuous model incorporating elasticity and micromagnetism, in a reduced two-dimensional, plane-strain setting. The aim is to give conceptual guidance for the design of composite materials independent of the concrete macroscopic device. Thus, on the background of homogenization theory, we determine the macroscopic behavior by studying an affine-periodic cell problem. An energy descent algorithm is developed, whose main ingredients are a boundary element method for the computation of the elastic and magnetic field energies; and a combinatorial component reflecting the phase transition in the individual particles, which are assumed to be of single-domain type. Our numerical results demonstrate the behavior of the macroscopic material properties for different possible microstructures, and give suggestions for the optimization of the composite.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jmps.2006.12.008</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-5096
ispartof Journal of the mechanics and physics of solids, 2007-07, Vol.55 (7), p.1462-1486
issn 0022-5096
language eng
recordid cdi_proquest_miscellaneous_29955123
source Elsevier ScienceDirect Journals
subjects Boundary elements
Homogenization
Magnetic shape memory
title Modeling and simulation of magnetic-shape-memory polymer composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20simulation%20of%20magnetic-shape-memory%20polymer%20composites&rft.jtitle=Journal%20of%20the%20mechanics%20and%20physics%20of%20solids&rft.au=Conti,%20S.&rft.date=2007-07-01&rft.volume=55&rft.issue=7&rft.spage=1462&rft.epage=1486&rft.pages=1462-1486&rft.issn=0022-5096&rft_id=info:doi/10.1016/j.jmps.2006.12.008&rft_dat=%3Cproquest_cross%3E29955123%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29955123&rft_id=info:pmid/&rft_els_id=S0022509607000142&rfr_iscdi=true