A stochastic model for high-Rayleigh-number convection
A stochastic one-dimensional model for thermal convection is formulated and applied to high-Rayleigh-number convection. Comparisons with experimental data for heat transfer in Rayleigh–Bénard cells are used to estimate two model parameters. Reasonable agreement with experimental results is obtained...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2005-04, Vol.528, p.173-205 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 205 |
---|---|
container_issue | |
container_start_page | 173 |
container_title | Journal of fluid mechanics |
container_volume | 528 |
creator | WUNSCH, SCOTT KERSTEIN, ALAN R. |
description | A stochastic one-dimensional model for thermal convection is formulated and applied to high-Rayleigh-number convection. Comparisons with experimental data for heat transfer in Rayleigh–Bénard cells are used to estimate two model parameters. Reasonable agreement with experimental results is obtained over a wide range of physical parameter values (six orders of magnitude in Rayleigh number, five orders of magnitude in Prandtl number). Using the model, the statistics of fluctuations in the core of the convection cell are studied. Good agreement with available experimental data is obtained. Two distinct p.d.f. shapes are seen; one at low Prandtl number which matches experimental observations, and another at high Prandtl number for which no experimental data exists. The model results are interpreted in terms of two distinct mechanisms for the production of core fluctuations. |
doi_str_mv | 10.1017/S0022112004003258 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29950684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112004003258</cupid><sourcerecordid>1399140211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-1d119f327e465b8bbfb2939ec1fc83dddb8fd7dd289ab137578d626f69ebb0c23</originalsourceid><addsrcrecordid>eNp1kMtKw0AUhgdRsFYfwF0QdBedSzKXpRatgiBet8Nc22iSqTOp2Lc3oUVBcXUO_N85fPwAHCJ4iiBiZ48QYowQhrCAkOCSb4ERKqjIGS3KbTAa4nzId8FeSq8QIgIFGwF6nqUumLlKXWWyJlhXZz7EbF7N5vmDWtVuWNplo13MTGg_nOmq0O6DHa_q5A42cwyery6fJtf57d30ZnJ-m5sClV2OLELCE8xcQUvNtfYaCyKcQd5wYq3V3FtmLeZCaURYybilmHoqnNbQYDIGJ-u_ixjely51sqmScXWtWheWSWIhSkh50YNHv8DXsIxt7yYxgpwTIngPoTVkYkgpOi8XsWpUXEkE5VCj_FNjf3O8eaySUbWPqjVV-jmkjJQMDwL5mqtS5z6_cxXfZI-wUtLpvZyy4kVM8YVkPU82LqrRsbIz92P8v80XCkyOmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210883398</pqid></control><display><type>article</type><title>A stochastic model for high-Rayleigh-number convection</title><source>Cambridge Journals</source><creator>WUNSCH, SCOTT ; KERSTEIN, ALAN R.</creator><creatorcontrib>WUNSCH, SCOTT ; KERSTEIN, ALAN R.</creatorcontrib><description>A stochastic one-dimensional model for thermal convection is formulated and applied to high-Rayleigh-number convection. Comparisons with experimental data for heat transfer in Rayleigh–Bénard cells are used to estimate two model parameters. Reasonable agreement with experimental results is obtained over a wide range of physical parameter values (six orders of magnitude in Rayleigh number, five orders of magnitude in Prandtl number). Using the model, the statistics of fluctuations in the core of the convection cell are studied. Good agreement with available experimental data is obtained. Two distinct p.d.f. shapes are seen; one at low Prandtl number which matches experimental observations, and another at high Prandtl number for which no experimental data exists. The model results are interpreted in terms of two distinct mechanisms for the production of core fluctuations.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112004003258</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Buoyancy-driven instability ; Convection ; Exact sciences and technology ; Experimental data ; Fluctuations ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Heat transfer ; Hydrodynamic stability ; Physics ; Stochastic models</subject><ispartof>Journal of fluid mechanics, 2005-04, Vol.528, p.173-205</ispartof><rights>2005 Cambridge University Press</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-1d119f327e465b8bbfb2939ec1fc83dddb8fd7dd289ab137578d626f69ebb0c23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112004003258/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16735724$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>WUNSCH, SCOTT</creatorcontrib><creatorcontrib>KERSTEIN, ALAN R.</creatorcontrib><title>A stochastic model for high-Rayleigh-number convection</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A stochastic one-dimensional model for thermal convection is formulated and applied to high-Rayleigh-number convection. Comparisons with experimental data for heat transfer in Rayleigh–Bénard cells are used to estimate two model parameters. Reasonable agreement with experimental results is obtained over a wide range of physical parameter values (six orders of magnitude in Rayleigh number, five orders of magnitude in Prandtl number). Using the model, the statistics of fluctuations in the core of the convection cell are studied. Good agreement with available experimental data is obtained. Two distinct p.d.f. shapes are seen; one at low Prandtl number which matches experimental observations, and another at high Prandtl number for which no experimental data exists. The model results are interpreted in terms of two distinct mechanisms for the production of core fluctuations.</description><subject>Buoyancy-driven instability</subject><subject>Convection</subject><subject>Exact sciences and technology</subject><subject>Experimental data</subject><subject>Fluctuations</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat transfer</subject><subject>Hydrodynamic stability</subject><subject>Physics</subject><subject>Stochastic models</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMtKw0AUhgdRsFYfwF0QdBedSzKXpRatgiBet8Nc22iSqTOp2Lc3oUVBcXUO_N85fPwAHCJ4iiBiZ48QYowQhrCAkOCSb4ERKqjIGS3KbTAa4nzId8FeSq8QIgIFGwF6nqUumLlKXWWyJlhXZz7EbF7N5vmDWtVuWNplo13MTGg_nOmq0O6DHa_q5A42cwyery6fJtf57d30ZnJ-m5sClV2OLELCE8xcQUvNtfYaCyKcQd5wYq3V3FtmLeZCaURYybilmHoqnNbQYDIGJ-u_ixjely51sqmScXWtWheWSWIhSkh50YNHv8DXsIxt7yYxgpwTIngPoTVkYkgpOi8XsWpUXEkE5VCj_FNjf3O8eaySUbWPqjVV-jmkjJQMDwL5mqtS5z6_cxXfZI-wUtLpvZyy4kVM8YVkPU82LqrRsbIz92P8v80XCkyOmg</recordid><startdate>20050410</startdate><enddate>20050410</enddate><creator>WUNSCH, SCOTT</creator><creator>KERSTEIN, ALAN R.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20050410</creationdate><title>A stochastic model for high-Rayleigh-number convection</title><author>WUNSCH, SCOTT ; KERSTEIN, ALAN R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-1d119f327e465b8bbfb2939ec1fc83dddb8fd7dd289ab137578d626f69ebb0c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Buoyancy-driven instability</topic><topic>Convection</topic><topic>Exact sciences and technology</topic><topic>Experimental data</topic><topic>Fluctuations</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat transfer</topic><topic>Hydrodynamic stability</topic><topic>Physics</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WUNSCH, SCOTT</creatorcontrib><creatorcontrib>KERSTEIN, ALAN R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WUNSCH, SCOTT</au><au>KERSTEIN, ALAN R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A stochastic model for high-Rayleigh-number convection</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2005-04-10</date><risdate>2005</risdate><volume>528</volume><spage>173</spage><epage>205</epage><pages>173-205</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>A stochastic one-dimensional model for thermal convection is formulated and applied to high-Rayleigh-number convection. Comparisons with experimental data for heat transfer in Rayleigh–Bénard cells are used to estimate two model parameters. Reasonable agreement with experimental results is obtained over a wide range of physical parameter values (six orders of magnitude in Rayleigh number, five orders of magnitude in Prandtl number). Using the model, the statistics of fluctuations in the core of the convection cell are studied. Good agreement with available experimental data is obtained. Two distinct p.d.f. shapes are seen; one at low Prandtl number which matches experimental observations, and another at high Prandtl number for which no experimental data exists. The model results are interpreted in terms of two distinct mechanisms for the production of core fluctuations.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112004003258</doi><tpages>33</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2005-04, Vol.528, p.173-205 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_29950684 |
source | Cambridge Journals |
subjects | Buoyancy-driven instability Convection Exact sciences and technology Experimental data Fluctuations Fluid dynamics Fundamental areas of phenomenology (including applications) Heat transfer Hydrodynamic stability Physics Stochastic models |
title | A stochastic model for high-Rayleigh-number convection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20stochastic%20model%20for%20high-Rayleigh-number%20convection&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=WUNSCH,%20SCOTT&rft.date=2005-04-10&rft.volume=528&rft.spage=173&rft.epage=205&rft.pages=173-205&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112004003258&rft_dat=%3Cproquest_cross%3E1399140211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210883398&rft_id=info:pmid/&rft_cupid=10_1017_S0022112004003258&rfr_iscdi=true |