A stochastic model for high-Rayleigh-number convection

A stochastic one-dimensional model for thermal convection is formulated and applied to high-Rayleigh-number convection. Comparisons with experimental data for heat transfer in Rayleigh–Bénard cells are used to estimate two model parameters. Reasonable agreement with experimental results is obtained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2005-04, Vol.528, p.173-205
Hauptverfasser: WUNSCH, SCOTT, KERSTEIN, ALAN R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 205
container_issue
container_start_page 173
container_title Journal of fluid mechanics
container_volume 528
creator WUNSCH, SCOTT
KERSTEIN, ALAN R.
description A stochastic one-dimensional model for thermal convection is formulated and applied to high-Rayleigh-number convection. Comparisons with experimental data for heat transfer in Rayleigh–Bénard cells are used to estimate two model parameters. Reasonable agreement with experimental results is obtained over a wide range of physical parameter values (six orders of magnitude in Rayleigh number, five orders of magnitude in Prandtl number). Using the model, the statistics of fluctuations in the core of the convection cell are studied. Good agreement with available experimental data is obtained. Two distinct p.d.f. shapes are seen; one at low Prandtl number which matches experimental observations, and another at high Prandtl number for which no experimental data exists. The model results are interpreted in terms of two distinct mechanisms for the production of core fluctuations.
doi_str_mv 10.1017/S0022112004003258
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29950684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112004003258</cupid><sourcerecordid>1399140211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-1d119f327e465b8bbfb2939ec1fc83dddb8fd7dd289ab137578d626f69ebb0c23</originalsourceid><addsrcrecordid>eNp1kMtKw0AUhgdRsFYfwF0QdBedSzKXpRatgiBet8Nc22iSqTOp2Lc3oUVBcXUO_N85fPwAHCJ4iiBiZ48QYowQhrCAkOCSb4ERKqjIGS3KbTAa4nzId8FeSq8QIgIFGwF6nqUumLlKXWWyJlhXZz7EbF7N5vmDWtVuWNplo13MTGg_nOmq0O6DHa_q5A42cwyery6fJtf57d30ZnJ-m5sClV2OLELCE8xcQUvNtfYaCyKcQd5wYq3V3FtmLeZCaURYybilmHoqnNbQYDIGJ-u_ixjely51sqmScXWtWheWSWIhSkh50YNHv8DXsIxt7yYxgpwTIngPoTVkYkgpOi8XsWpUXEkE5VCj_FNjf3O8eaySUbWPqjVV-jmkjJQMDwL5mqtS5z6_cxXfZI-wUtLpvZyy4kVM8YVkPU82LqrRsbIz92P8v80XCkyOmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210883398</pqid></control><display><type>article</type><title>A stochastic model for high-Rayleigh-number convection</title><source>Cambridge Journals</source><creator>WUNSCH, SCOTT ; KERSTEIN, ALAN R.</creator><creatorcontrib>WUNSCH, SCOTT ; KERSTEIN, ALAN R.</creatorcontrib><description>A stochastic one-dimensional model for thermal convection is formulated and applied to high-Rayleigh-number convection. Comparisons with experimental data for heat transfer in Rayleigh–Bénard cells are used to estimate two model parameters. Reasonable agreement with experimental results is obtained over a wide range of physical parameter values (six orders of magnitude in Rayleigh number, five orders of magnitude in Prandtl number). Using the model, the statistics of fluctuations in the core of the convection cell are studied. Good agreement with available experimental data is obtained. Two distinct p.d.f. shapes are seen; one at low Prandtl number which matches experimental observations, and another at high Prandtl number for which no experimental data exists. The model results are interpreted in terms of two distinct mechanisms for the production of core fluctuations.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112004003258</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Buoyancy-driven instability ; Convection ; Exact sciences and technology ; Experimental data ; Fluctuations ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Heat transfer ; Hydrodynamic stability ; Physics ; Stochastic models</subject><ispartof>Journal of fluid mechanics, 2005-04, Vol.528, p.173-205</ispartof><rights>2005 Cambridge University Press</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-1d119f327e465b8bbfb2939ec1fc83dddb8fd7dd289ab137578d626f69ebb0c23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112004003258/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16735724$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>WUNSCH, SCOTT</creatorcontrib><creatorcontrib>KERSTEIN, ALAN R.</creatorcontrib><title>A stochastic model for high-Rayleigh-number convection</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A stochastic one-dimensional model for thermal convection is formulated and applied to high-Rayleigh-number convection. Comparisons with experimental data for heat transfer in Rayleigh–Bénard cells are used to estimate two model parameters. Reasonable agreement with experimental results is obtained over a wide range of physical parameter values (six orders of magnitude in Rayleigh number, five orders of magnitude in Prandtl number). Using the model, the statistics of fluctuations in the core of the convection cell are studied. Good agreement with available experimental data is obtained. Two distinct p.d.f. shapes are seen; one at low Prandtl number which matches experimental observations, and another at high Prandtl number for which no experimental data exists. The model results are interpreted in terms of two distinct mechanisms for the production of core fluctuations.</description><subject>Buoyancy-driven instability</subject><subject>Convection</subject><subject>Exact sciences and technology</subject><subject>Experimental data</subject><subject>Fluctuations</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat transfer</subject><subject>Hydrodynamic stability</subject><subject>Physics</subject><subject>Stochastic models</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMtKw0AUhgdRsFYfwF0QdBedSzKXpRatgiBet8Nc22iSqTOp2Lc3oUVBcXUO_N85fPwAHCJ4iiBiZ48QYowQhrCAkOCSb4ERKqjIGS3KbTAa4nzId8FeSq8QIgIFGwF6nqUumLlKXWWyJlhXZz7EbF7N5vmDWtVuWNplo13MTGg_nOmq0O6DHa_q5A42cwyery6fJtf57d30ZnJ-m5sClV2OLELCE8xcQUvNtfYaCyKcQd5wYq3V3FtmLeZCaURYybilmHoqnNbQYDIGJ-u_ixjely51sqmScXWtWheWSWIhSkh50YNHv8DXsIxt7yYxgpwTIngPoTVkYkgpOi8XsWpUXEkE5VCj_FNjf3O8eaySUbWPqjVV-jmkjJQMDwL5mqtS5z6_cxXfZI-wUtLpvZyy4kVM8YVkPU82LqrRsbIz92P8v80XCkyOmg</recordid><startdate>20050410</startdate><enddate>20050410</enddate><creator>WUNSCH, SCOTT</creator><creator>KERSTEIN, ALAN R.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20050410</creationdate><title>A stochastic model for high-Rayleigh-number convection</title><author>WUNSCH, SCOTT ; KERSTEIN, ALAN R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-1d119f327e465b8bbfb2939ec1fc83dddb8fd7dd289ab137578d626f69ebb0c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Buoyancy-driven instability</topic><topic>Convection</topic><topic>Exact sciences and technology</topic><topic>Experimental data</topic><topic>Fluctuations</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat transfer</topic><topic>Hydrodynamic stability</topic><topic>Physics</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WUNSCH, SCOTT</creatorcontrib><creatorcontrib>KERSTEIN, ALAN R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WUNSCH, SCOTT</au><au>KERSTEIN, ALAN R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A stochastic model for high-Rayleigh-number convection</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2005-04-10</date><risdate>2005</risdate><volume>528</volume><spage>173</spage><epage>205</epage><pages>173-205</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>A stochastic one-dimensional model for thermal convection is formulated and applied to high-Rayleigh-number convection. Comparisons with experimental data for heat transfer in Rayleigh–Bénard cells are used to estimate two model parameters. Reasonable agreement with experimental results is obtained over a wide range of physical parameter values (six orders of magnitude in Rayleigh number, five orders of magnitude in Prandtl number). Using the model, the statistics of fluctuations in the core of the convection cell are studied. Good agreement with available experimental data is obtained. Two distinct p.d.f. shapes are seen; one at low Prandtl number which matches experimental observations, and another at high Prandtl number for which no experimental data exists. The model results are interpreted in terms of two distinct mechanisms for the production of core fluctuations.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112004003258</doi><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2005-04, Vol.528, p.173-205
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_29950684
source Cambridge Journals
subjects Buoyancy-driven instability
Convection
Exact sciences and technology
Experimental data
Fluctuations
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Heat transfer
Hydrodynamic stability
Physics
Stochastic models
title A stochastic model for high-Rayleigh-number convection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20stochastic%20model%20for%20high-Rayleigh-number%20convection&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=WUNSCH,%20SCOTT&rft.date=2005-04-10&rft.volume=528&rft.spage=173&rft.epage=205&rft.pages=173-205&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112004003258&rft_dat=%3Cproquest_cross%3E1399140211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210883398&rft_id=info:pmid/&rft_cupid=10_1017_S0022112004003258&rfr_iscdi=true