Rigid body equations of motion for modeling and control of spacecraft formations. Part 1: Absolute equations of motion
In this paper, we present a tensorial (i.e., coordinate-free) derivation of the equations of motion of a formation consisting of N spacecraft each modeled as a rigid body. Specifically, using spatial velocities and spatial forces we demonstrate that the equations of motion for a single free rigid bo...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3653 vol.4 |
---|---|
container_issue | |
container_start_page | 3646 |
container_title | |
container_volume | 4 |
creator | Ploen, S.R. Hadaegh, F.Y. Scharf, D.P. |
description | In this paper, we present a tensorial (i.e., coordinate-free) derivation of the equations of motion of a formation consisting of N spacecraft each modeled as a rigid body. Specifically, using spatial velocities and spatial forces we demonstrate that the equations of motion for a single free rigid body (i.e., a single spacecraft) can be naturally expressed in four fundamental forms. The four forms of the dynamic equations include (1) motion about the system center-of-mass in terms of absolute rates-of-change, (2) motion about the system center-of-mass in terms of body rates of change, (3) motion about an arbitrary point fixed on the rigid body in terms of absolute rates-of-change, and (4) motion about an arbitrary point fixed on the rigid body in terms of body rates-of-change. We then introduce the spatial Coriolis dyadic and discuss how a proper choice of this non-unique tensor leads to dynamic models of formations satisfying the skew-symmetry property required by an important class of nonlinear tracking control laws. Next, we demonstrate that the equations of motion of the entire formation have the same structure as the equations of motion of an individual spacecraft. The results presented in this paper form the cornerstone of a coordinate-free modeling environment for developing dynamic models for various formation flying applications. |
doi_str_mv | 10.23919/ACC.2004.1384478 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_29923798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1384478</ieee_id><sourcerecordid>29923798</sourcerecordid><originalsourceid>FETCH-LOGICAL-i166t-28e04fb027052fdc9f4d4f8134cabe95e18d824c57b3ff990fcfa9e297e95ccf3</originalsourceid><addsrcrecordid>eNptkUtLxDAUhYMPcBznB4ibbHTXmlebxN1QfMGAIrouaZoMkbaZSVph_r0tHXAjXLgHznfP4lwArjFKCZVY3q-LIiUIsRRTwRgXJ2BBKBdJJnJ8ClaSCzQOFZRm_AwsEGc0wTmWF-Ayxm-EsJQ5WoCfD7d1Nax8fYBmP6je-S5Cb2HrJwmtD6OsTeO6LVRdDbXv-uCbCYk7pY0OyvYT1s63KXxXoYf4Aa6r6JuhN__lXoFzq5poVse9BF9Pj5_FS7J5e34t1pvE4TzvEyIMYrZChKOM2FpLy2pmBaZMq8rIzGBRC8J0xitqrZTIaqukIZKPptaWLsHdnLsLfj-Y2Jeti9o0jeqMH2JJpBxbk2IEb4-gilo1NqhOu1jugmtVOJRY0GxsOx-5m5lzxpg_e_4B_QWWmXoW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>29923798</pqid></control><display><type>conference_proceeding</type><title>Rigid body equations of motion for modeling and control of spacecraft formations. Part 1: Absolute equations of motion</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ploen, S.R. ; Hadaegh, F.Y. ; Scharf, D.P.</creator><creatorcontrib>Ploen, S.R. ; Hadaegh, F.Y. ; Scharf, D.P.</creatorcontrib><description>In this paper, we present a tensorial (i.e., coordinate-free) derivation of the equations of motion of a formation consisting of N spacecraft each modeled as a rigid body. Specifically, using spatial velocities and spatial forces we demonstrate that the equations of motion for a single free rigid body (i.e., a single spacecraft) can be naturally expressed in four fundamental forms. The four forms of the dynamic equations include (1) motion about the system center-of-mass in terms of absolute rates-of-change, (2) motion about the system center-of-mass in terms of body rates of change, (3) motion about an arbitrary point fixed on the rigid body in terms of absolute rates-of-change, and (4) motion about an arbitrary point fixed on the rigid body in terms of body rates-of-change. We then introduce the spatial Coriolis dyadic and discuss how a proper choice of this non-unique tensor leads to dynamic models of formations satisfying the skew-symmetry property required by an important class of nonlinear tracking control laws. Next, we demonstrate that the equations of motion of the entire formation have the same structure as the equations of motion of an individual spacecraft. The results presented in this paper form the cornerstone of a coordinate-free modeling environment for developing dynamic models for various formation flying applications.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 9780780383357</identifier><identifier>ISBN: 0780383354</identifier><identifier>EISSN: 2378-5861</identifier><identifier>DOI: 10.23919/ACC.2004.1384478</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Application software ; Applied sciences ; Computer science; control theory; systems ; Control system synthesis ; Control theory. Systems ; Exact sciences and technology ; Laboratories ; Motion control ; NASA ; Nonlinear equations ; Propulsion ; Space missions ; Space technology ; Space vehicles ; Tensile stress</subject><ispartof>2004 American Control Conference Proceedings; Volume 4 of 6, 2004, Vol.4, p.3646-3653 vol.4</ispartof><rights>2007 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1384478$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,2052,27901,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1384478$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18352006$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ploen, S.R.</creatorcontrib><creatorcontrib>Hadaegh, F.Y.</creatorcontrib><creatorcontrib>Scharf, D.P.</creatorcontrib><title>Rigid body equations of motion for modeling and control of spacecraft formations. Part 1: Absolute equations of motion</title><title>2004 American Control Conference Proceedings; Volume 4 of 6</title><addtitle>ACC</addtitle><description>In this paper, we present a tensorial (i.e., coordinate-free) derivation of the equations of motion of a formation consisting of N spacecraft each modeled as a rigid body. Specifically, using spatial velocities and spatial forces we demonstrate that the equations of motion for a single free rigid body (i.e., a single spacecraft) can be naturally expressed in four fundamental forms. The four forms of the dynamic equations include (1) motion about the system center-of-mass in terms of absolute rates-of-change, (2) motion about the system center-of-mass in terms of body rates of change, (3) motion about an arbitrary point fixed on the rigid body in terms of absolute rates-of-change, and (4) motion about an arbitrary point fixed on the rigid body in terms of body rates-of-change. We then introduce the spatial Coriolis dyadic and discuss how a proper choice of this non-unique tensor leads to dynamic models of formations satisfying the skew-symmetry property required by an important class of nonlinear tracking control laws. Next, we demonstrate that the equations of motion of the entire formation have the same structure as the equations of motion of an individual spacecraft. The results presented in this paper form the cornerstone of a coordinate-free modeling environment for developing dynamic models for various formation flying applications.</description><subject>Application software</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Laboratories</subject><subject>Motion control</subject><subject>NASA</subject><subject>Nonlinear equations</subject><subject>Propulsion</subject><subject>Space missions</subject><subject>Space technology</subject><subject>Space vehicles</subject><subject>Tensile stress</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>9780780383357</isbn><isbn>0780383354</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNptkUtLxDAUhYMPcBznB4ibbHTXmlebxN1QfMGAIrouaZoMkbaZSVph_r0tHXAjXLgHznfP4lwArjFKCZVY3q-LIiUIsRRTwRgXJ2BBKBdJJnJ8ClaSCzQOFZRm_AwsEGc0wTmWF-Ayxm-EsJQ5WoCfD7d1Nax8fYBmP6je-S5Cb2HrJwmtD6OsTeO6LVRdDbXv-uCbCYk7pY0OyvYT1s63KXxXoYf4Aa6r6JuhN__lXoFzq5poVse9BF9Pj5_FS7J5e34t1pvE4TzvEyIMYrZChKOM2FpLy2pmBaZMq8rIzGBRC8J0xitqrZTIaqukIZKPptaWLsHdnLsLfj-Y2Jeti9o0jeqMH2JJpBxbk2IEb4-gilo1NqhOu1jugmtVOJRY0GxsOx-5m5lzxpg_e_4B_QWWmXoW</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Ploen, S.R.</creator><creator>Hadaegh, F.Y.</creator><creator>Scharf, D.P.</creator><general>IEEE</general><general>American Automatic Control Council</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040101</creationdate><title>Rigid body equations of motion for modeling and control of spacecraft formations. Part 1: Absolute equations of motion</title><author>Ploen, S.R. ; Hadaegh, F.Y. ; Scharf, D.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i166t-28e04fb027052fdc9f4d4f8134cabe95e18d824c57b3ff990fcfa9e297e95ccf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Application software</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Laboratories</topic><topic>Motion control</topic><topic>NASA</topic><topic>Nonlinear equations</topic><topic>Propulsion</topic><topic>Space missions</topic><topic>Space technology</topic><topic>Space vehicles</topic><topic>Tensile stress</topic><toplevel>online_resources</toplevel><creatorcontrib>Ploen, S.R.</creatorcontrib><creatorcontrib>Hadaegh, F.Y.</creatorcontrib><creatorcontrib>Scharf, D.P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ploen, S.R.</au><au>Hadaegh, F.Y.</au><au>Scharf, D.P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Rigid body equations of motion for modeling and control of spacecraft formations. Part 1: Absolute equations of motion</atitle><btitle>2004 American Control Conference Proceedings; Volume 4 of 6</btitle><stitle>ACC</stitle><date>2004-01-01</date><risdate>2004</risdate><volume>4</volume><spage>3646</spage><epage>3653 vol.4</epage><pages>3646-3653 vol.4</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>9780780383357</isbn><isbn>0780383354</isbn><abstract>In this paper, we present a tensorial (i.e., coordinate-free) derivation of the equations of motion of a formation consisting of N spacecraft each modeled as a rigid body. Specifically, using spatial velocities and spatial forces we demonstrate that the equations of motion for a single free rigid body (i.e., a single spacecraft) can be naturally expressed in four fundamental forms. The four forms of the dynamic equations include (1) motion about the system center-of-mass in terms of absolute rates-of-change, (2) motion about the system center-of-mass in terms of body rates of change, (3) motion about an arbitrary point fixed on the rigid body in terms of absolute rates-of-change, and (4) motion about an arbitrary point fixed on the rigid body in terms of body rates-of-change. We then introduce the spatial Coriolis dyadic and discuss how a proper choice of this non-unique tensor leads to dynamic models of formations satisfying the skew-symmetry property required by an important class of nonlinear tracking control laws. Next, we demonstrate that the equations of motion of the entire formation have the same structure as the equations of motion of an individual spacecraft. The results presented in this paper form the cornerstone of a coordinate-free modeling environment for developing dynamic models for various formation flying applications.</abstract><cop>Piscataway NJ</cop><cop>Evanston IL</cop><pub>IEEE</pub><doi>10.23919/ACC.2004.1384478</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0743-1619 |
ispartof | 2004 American Control Conference Proceedings; Volume 4 of 6, 2004, Vol.4, p.3646-3653 vol.4 |
issn | 0743-1619 2378-5861 |
language | eng |
recordid | cdi_proquest_miscellaneous_29923798 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Application software Applied sciences Computer science control theory systems Control system synthesis Control theory. Systems Exact sciences and technology Laboratories Motion control NASA Nonlinear equations Propulsion Space missions Space technology Space vehicles Tensile stress |
title | Rigid body equations of motion for modeling and control of spacecraft formations. Part 1: Absolute equations of motion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Rigid%20body%20equations%20of%20motion%20for%20modeling%20and%20control%20of%20spacecraft%20formations.%20Part%201:%20Absolute%20equations%20of%20motion&rft.btitle=2004%20American%20Control%20Conference%20Proceedings;%20Volume%204%20of%206&rft.au=Ploen,%20S.R.&rft.date=2004-01-01&rft.volume=4&rft.spage=3646&rft.epage=3653%20vol.4&rft.pages=3646-3653%20vol.4&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=9780780383357&rft.isbn_list=0780383354&rft_id=info:doi/10.23919/ACC.2004.1384478&rft_dat=%3Cproquest_6IE%3E29923798%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29923798&rft_id=info:pmid/&rft_ieee_id=1384478&rfr_iscdi=true |