A robust approach for the single machine scheduling problem
This paper describes a robust approach for the single machine scheduling problem 1|ri|L max. The method is said to be robust since it characterizes a large set of optimal solutions allowing to switch from one solution to another, without any performance loss, in order to face potential disruptions w...
Gespeichert in:
Veröffentlicht in: | Journal of scheduling 2007-06, Vol.10 (3), p.209-221 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 221 |
---|---|
container_issue | 3 |
container_start_page | 209 |
container_title | Journal of scheduling |
container_volume | 10 |
creator | Briand, Cyril La, H Trung Erschler, Jacques |
description | This paper describes a robust approach for the single machine scheduling problem 1|ri|L max. The method is said to be robust since it characterizes a large set of optimal solutions allowing to switch from one solution to another, without any performance loss, in order to face potential disruptions which occur during the schedule execution. It is based on a dominance theorem that characterizes a set of dominant sequences, using the interval structure defined by the relative order of the release and the due dates of jobs. The performance of a set of dominant sequences can be determined in polynomial time by computing the most favorable and the most unfavorable sequences associated with each job, with regard to the lateness criterion. A branch and bound procedure is proposed which modifies the interval structure of the problem in order to tighten the dominant set of sequences so that only the optimal sequences are conserved. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s10951-007-0010-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29921613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29921613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-48cd524340624ab5b2615f7020236876dc41b172ccb3a559a5c09ff31b8b20193</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG9FwVs1M_log6dl8QsWvOg5JNnU7dIvk_bgvzd1PQkehnnz8jCTeQm5BHoLlBZ3EagSkCeZCmjOjsgiWSoHjuL4R_NcApOn5CzGPaW0LBAW5H6Vhd5OcczMMITeuF1W9SEbdz6LdffR-KxNXt2lp9v57dQkM0ugbXx7Tk4q00R_8duX5P3x4W39nG9en17Wq03uWMHHnJduK5AzTiVyY4VFCaIqKFJksizk1nGwUKBzlhkhlBGOqqpiYEuLFBRbkpvD3LT3c_Jx1G0dnW8a0_l-ihqVQki3JfD6D7jvp9Clv2mUUgKgUDN19S_FkCNXUiQIDpALfYzBV3oIdWvClwaq58T1IXE9yzlxzdg3XbtwUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232424965</pqid></control><display><type>article</type><title>A robust approach for the single machine scheduling problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Briand, Cyril ; La, H Trung ; Erschler, Jacques</creator><creatorcontrib>Briand, Cyril ; La, H Trung ; Erschler, Jacques</creatorcontrib><description>This paper describes a robust approach for the single machine scheduling problem 1|ri|L max. The method is said to be robust since it characterizes a large set of optimal solutions allowing to switch from one solution to another, without any performance loss, in order to face potential disruptions which occur during the schedule execution. It is based on a dominance theorem that characterizes a set of dominant sequences, using the interval structure defined by the relative order of the release and the due dates of jobs. The performance of a set of dominant sequences can be determined in polynomial time by computing the most favorable and the most unfavorable sequences associated with each job, with regard to the lateness criterion. A branch and bound procedure is proposed which modifies the interval structure of the problem in order to tighten the dominant set of sequences so that only the optimal sequences are conserved. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1094-6136</identifier><identifier>EISSN: 1099-1425</identifier><identifier>DOI: 10.1007/s10951-007-0010-3</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Decision making ; Fuzzy sets ; Job shops ; Lateness ; Mathematical models ; Polynomials ; Production scheduling ; Robustness ; Schedules ; Scheduling ; Sequences ; Studies</subject><ispartof>Journal of scheduling, 2007-06, Vol.10 (3), p.209-221</ispartof><rights>Springer Science+Business Media, LLC 2007</rights><rights>Springer Science+Business Media, LLC 2007.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-48cd524340624ab5b2615f7020236876dc41b172ccb3a559a5c09ff31b8b20193</citedby><cites>FETCH-LOGICAL-c374t-48cd524340624ab5b2615f7020236876dc41b172ccb3a559a5c09ff31b8b20193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Briand, Cyril</creatorcontrib><creatorcontrib>La, H Trung</creatorcontrib><creatorcontrib>Erschler, Jacques</creatorcontrib><title>A robust approach for the single machine scheduling problem</title><title>Journal of scheduling</title><description>This paper describes a robust approach for the single machine scheduling problem 1|ri|L max. The method is said to be robust since it characterizes a large set of optimal solutions allowing to switch from one solution to another, without any performance loss, in order to face potential disruptions which occur during the schedule execution. It is based on a dominance theorem that characterizes a set of dominant sequences, using the interval structure defined by the relative order of the release and the due dates of jobs. The performance of a set of dominant sequences can be determined in polynomial time by computing the most favorable and the most unfavorable sequences associated with each job, with regard to the lateness criterion. A branch and bound procedure is proposed which modifies the interval structure of the problem in order to tighten the dominant set of sequences so that only the optimal sequences are conserved. [PUBLICATION ABSTRACT]</description><subject>Decision making</subject><subject>Fuzzy sets</subject><subject>Job shops</subject><subject>Lateness</subject><subject>Mathematical models</subject><subject>Polynomials</subject><subject>Production scheduling</subject><subject>Robustness</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Sequences</subject><subject>Studies</subject><issn>1094-6136</issn><issn>1099-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG9FwVs1M_log6dl8QsWvOg5JNnU7dIvk_bgvzd1PQkehnnz8jCTeQm5BHoLlBZ3EagSkCeZCmjOjsgiWSoHjuL4R_NcApOn5CzGPaW0LBAW5H6Vhd5OcczMMITeuF1W9SEbdz6LdffR-KxNXt2lp9v57dQkM0ugbXx7Tk4q00R_8duX5P3x4W39nG9en17Wq03uWMHHnJduK5AzTiVyY4VFCaIqKFJksizk1nGwUKBzlhkhlBGOqqpiYEuLFBRbkpvD3LT3c_Jx1G0dnW8a0_l-ihqVQki3JfD6D7jvp9Clv2mUUgKgUDN19S_FkCNXUiQIDpALfYzBV3oIdWvClwaq58T1IXE9yzlxzdg3XbtwUw</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Briand, Cyril</creator><creator>La, H Trung</creator><creator>Erschler, Jacques</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M0T</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20070601</creationdate><title>A robust approach for the single machine scheduling problem</title><author>Briand, Cyril ; La, H Trung ; Erschler, Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-48cd524340624ab5b2615f7020236876dc41b172ccb3a559a5c09ff31b8b20193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Decision making</topic><topic>Fuzzy sets</topic><topic>Job shops</topic><topic>Lateness</topic><topic>Mathematical models</topic><topic>Polynomials</topic><topic>Production scheduling</topic><topic>Robustness</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Sequences</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Briand, Cyril</creatorcontrib><creatorcontrib>La, H Trung</creatorcontrib><creatorcontrib>Erschler, Jacques</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of scheduling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Briand, Cyril</au><au>La, H Trung</au><au>Erschler, Jacques</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust approach for the single machine scheduling problem</atitle><jtitle>Journal of scheduling</jtitle><date>2007-06-01</date><risdate>2007</risdate><volume>10</volume><issue>3</issue><spage>209</spage><epage>221</epage><pages>209-221</pages><issn>1094-6136</issn><eissn>1099-1425</eissn><abstract>This paper describes a robust approach for the single machine scheduling problem 1|ri|L max. The method is said to be robust since it characterizes a large set of optimal solutions allowing to switch from one solution to another, without any performance loss, in order to face potential disruptions which occur during the schedule execution. It is based on a dominance theorem that characterizes a set of dominant sequences, using the interval structure defined by the relative order of the release and the due dates of jobs. The performance of a set of dominant sequences can be determined in polynomial time by computing the most favorable and the most unfavorable sequences associated with each job, with regard to the lateness criterion. A branch and bound procedure is proposed which modifies the interval structure of the problem in order to tighten the dominant set of sequences so that only the optimal sequences are conserved. [PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10951-007-0010-3</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-6136 |
ispartof | Journal of scheduling, 2007-06, Vol.10 (3), p.209-221 |
issn | 1094-6136 1099-1425 |
language | eng |
recordid | cdi_proquest_miscellaneous_29921613 |
source | SpringerLink Journals - AutoHoldings |
subjects | Decision making Fuzzy sets Job shops Lateness Mathematical models Polynomials Production scheduling Robustness Schedules Scheduling Sequences Studies |
title | A robust approach for the single machine scheduling problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A58%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20approach%20for%20the%20single%20machine%20scheduling%20problem&rft.jtitle=Journal%20of%20scheduling&rft.au=Briand,%20Cyril&rft.date=2007-06-01&rft.volume=10&rft.issue=3&rft.spage=209&rft.epage=221&rft.pages=209-221&rft.issn=1094-6136&rft.eissn=1099-1425&rft_id=info:doi/10.1007/s10951-007-0010-3&rft_dat=%3Cproquest_cross%3E29921613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=232424965&rft_id=info:pmid/&rfr_iscdi=true |