The influence of carrier size and shape in the moving bed biofilm process

The moving bed biofilm process is based on plastic carriers on which biomass attaches and grows. The original Kaldnes carrier was made of high-density polyethylene (density 0.95 gcm super(-1)) that could be used in filling fractions (volume of carriers in empty reactor) up to 70% that gives a specif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2000-01, Vol.41 (4-5), p.383-391
Hauptverfasser: ØDEGAARD, H, GISVOLD, B, STRICKLAND, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 391
container_issue 4-5
container_start_page 383
container_title Water science and technology
container_volume 41
creator ØDEGAARD, H
GISVOLD, B
STRICKLAND, J
description The moving bed biofilm process is based on plastic carriers on which biomass attaches and grows. The original Kaldnes carrier was made of high-density polyethylene (density 0.95 gcm super(-1)) that could be used in filling fractions (volume of carriers in empty reactor) up to 70% that gives a specific area of 350 m super(2)m super(-3). Lately there has been an interest in the use of larger carrier elements, especially when using the process for upgrading of activated sludge plants. This paper analyses the influence of the carrier size and shape on performance, especially related to highly loaded plants working on municipal wastewater. The results demonstrate that moving bed biofilm reactors should be designed based on surface area loading rate (g COD/m super(2)d) and that shape and size of the carrier do not seem to be significant as long as the effective surface area is the same. The results indicate that very high organic loads can be used in order to remove soluble COD but that the settleability of the sludge is negatively influenced at high loading rates.
doi_str_mv 10.2166/wst.2000.0470
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29917792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1943363215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-7a65ca8199123fa567107e3feea618f1cd3e58df20da3bc8ddd1f312712469d73</originalsourceid><addsrcrecordid>eNqN0TtLBDEUBeDgA1wfpX1AtJs1uTeTzJQivkCw0Tpk83AjszNrsqvorzfDCoKNVmm-e5LcQ8gxZ1PgUp6_59UUGGNTJhTbIhPetrJqFcI22ectYwAgQO6QCQOFFQfAPbKf80sZUSjYhNw9zj2NfejWvreeDoFak1L0ieb46anpHc1zsxwNXRW6GN5i_0xn3tFZHELsFnSZButzPiS7wXTZH32fB-Tp-urx8ra6f7i5u7y4ryw2clUpI2trmvJQDhhMLRVnymPw3kjeBG4d-rpxAZgzOLONc44H5KA4CNk6hQfkbJNb7n1d-7zSi5it7zrT-2GdNZRkpVr4B5StGPfyFyxxOO60wJNf8GVYp778VvNWIEoEXhdVbZRNQ87JB71McWHSh-ZMj63p0poeW9Nja8WffqeabE0XkultzD9DgolaosAviC-TlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943363215</pqid></control><display><type>article</type><title>The influence of carrier size and shape in the moving bed biofilm process</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>ØDEGAARD, H ; GISVOLD, B ; STRICKLAND, J</creator><contributor>Rogalla, F ; van Loosdrecht, MCM (eds)</contributor><creatorcontrib>ØDEGAARD, H ; GISVOLD, B ; STRICKLAND, J ; Rogalla, F ; van Loosdrecht, MCM (eds)</creatorcontrib><description>The moving bed biofilm process is based on plastic carriers on which biomass attaches and grows. The original Kaldnes carrier was made of high-density polyethylene (density 0.95 gcm super(-1)) that could be used in filling fractions (volume of carriers in empty reactor) up to 70% that gives a specific area of 350 m super(2)m super(-3). Lately there has been an interest in the use of larger carrier elements, especially when using the process for upgrading of activated sludge plants. This paper analyses the influence of the carrier size and shape on performance, especially related to highly loaded plants working on municipal wastewater. The results demonstrate that moving bed biofilm reactors should be designed based on surface area loading rate (g COD/m super(2)d) and that shape and size of the carrier do not seem to be significant as long as the effective surface area is the same. The results indicate that very high organic loads can be used in order to remove soluble COD but that the settleability of the sludge is negatively influenced at high loading rates.</description><identifier>ISSN: 0273-1223</identifier><identifier>ISBN: 1900222426</identifier><identifier>ISBN: 9781900222426</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2000.0470</identifier><identifier>CODEN: WSTED4</identifier><language>eng</language><publisher>London: IWA</publisher><subject>Activated Sludge ; Applied sciences ; Biofilms ; Biological and medical sciences ; Biological treatment of waters ; Bioreactors ; Biotechnology ; Carrier mobility ; Environment and pollution ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General purification processes ; High density polyethylenes ; Industrial applications and implications. Economical aspects ; Load distribution ; Loading rate ; Municipal wastewater ; Organic loading ; Plants (botany) ; Pollution ; Polyethylene ; Reactors ; Shape ; Sludge ; Surface area ; Wastewater ; Wastewaters ; Water treatment and pollution</subject><ispartof>Water science and technology, 2000-01, Vol.41 (4-5), p.383-391</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright IWA Publishing Feb 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-7a65ca8199123fa567107e3feea618f1cd3e58df20da3bc8ddd1f312712469d73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14045634$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Rogalla, F</contributor><contributor>van Loosdrecht, MCM (eds)</contributor><creatorcontrib>ØDEGAARD, H</creatorcontrib><creatorcontrib>GISVOLD, B</creatorcontrib><creatorcontrib>STRICKLAND, J</creatorcontrib><title>The influence of carrier size and shape in the moving bed biofilm process</title><title>Water science and technology</title><description>The moving bed biofilm process is based on plastic carriers on which biomass attaches and grows. The original Kaldnes carrier was made of high-density polyethylene (density 0.95 gcm super(-1)) that could be used in filling fractions (volume of carriers in empty reactor) up to 70% that gives a specific area of 350 m super(2)m super(-3). Lately there has been an interest in the use of larger carrier elements, especially when using the process for upgrading of activated sludge plants. This paper analyses the influence of the carrier size and shape on performance, especially related to highly loaded plants working on municipal wastewater. The results demonstrate that moving bed biofilm reactors should be designed based on surface area loading rate (g COD/m super(2)d) and that shape and size of the carrier do not seem to be significant as long as the effective surface area is the same. The results indicate that very high organic loads can be used in order to remove soluble COD but that the settleability of the sludge is negatively influenced at high loading rates.</description><subject>Activated Sludge</subject><subject>Applied sciences</subject><subject>Biofilms</subject><subject>Biological and medical sciences</subject><subject>Biological treatment of waters</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Carrier mobility</subject><subject>Environment and pollution</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General purification processes</subject><subject>High density polyethylenes</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Load distribution</subject><subject>Loading rate</subject><subject>Municipal wastewater</subject><subject>Organic loading</subject><subject>Plants (botany)</subject><subject>Pollution</subject><subject>Polyethylene</subject><subject>Reactors</subject><subject>Shape</subject><subject>Sludge</subject><subject>Surface area</subject><subject>Wastewater</subject><subject>Wastewaters</subject><subject>Water treatment and pollution</subject><issn>0273-1223</issn><issn>1996-9732</issn><isbn>1900222426</isbn><isbn>9781900222426</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqN0TtLBDEUBeDgA1wfpX1AtJs1uTeTzJQivkCw0Tpk83AjszNrsqvorzfDCoKNVmm-e5LcQ8gxZ1PgUp6_59UUGGNTJhTbIhPetrJqFcI22ectYwAgQO6QCQOFFQfAPbKf80sZUSjYhNw9zj2NfejWvreeDoFak1L0ieb46anpHc1zsxwNXRW6GN5i_0xn3tFZHELsFnSZButzPiS7wXTZH32fB-Tp-urx8ra6f7i5u7y4ryw2clUpI2trmvJQDhhMLRVnymPw3kjeBG4d-rpxAZgzOLONc44H5KA4CNk6hQfkbJNb7n1d-7zSi5it7zrT-2GdNZRkpVr4B5StGPfyFyxxOO60wJNf8GVYp778VvNWIEoEXhdVbZRNQ87JB71McWHSh-ZMj63p0poeW9Nja8WffqeabE0XkultzD9DgolaosAviC-TlA</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>ØDEGAARD, H</creator><creator>GISVOLD, B</creator><creator>STRICKLAND, J</creator><general>IWA</general><general>IWA Publishing</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7T7</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7TB</scope><scope>KR7</scope></search><sort><creationdate>20000101</creationdate><title>The influence of carrier size and shape in the moving bed biofilm process</title><author>ØDEGAARD, H ; GISVOLD, B ; STRICKLAND, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-7a65ca8199123fa567107e3feea618f1cd3e58df20da3bc8ddd1f312712469d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Activated Sludge</topic><topic>Applied sciences</topic><topic>Biofilms</topic><topic>Biological and medical sciences</topic><topic>Biological treatment of waters</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Carrier mobility</topic><topic>Environment and pollution</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General purification processes</topic><topic>High density polyethylenes</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Load distribution</topic><topic>Loading rate</topic><topic>Municipal wastewater</topic><topic>Organic loading</topic><topic>Plants (botany)</topic><topic>Pollution</topic><topic>Polyethylene</topic><topic>Reactors</topic><topic>Shape</topic><topic>Sludge</topic><topic>Surface area</topic><topic>Wastewater</topic><topic>Wastewaters</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ØDEGAARD, H</creatorcontrib><creatorcontrib>GISVOLD, B</creatorcontrib><creatorcontrib>STRICKLAND, J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Civil Engineering Abstracts</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ØDEGAARD, H</au><au>GISVOLD, B</au><au>STRICKLAND, J</au><au>Rogalla, F</au><au>van Loosdrecht, MCM (eds)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of carrier size and shape in the moving bed biofilm process</atitle><jtitle>Water science and technology</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>41</volume><issue>4-5</issue><spage>383</spage><epage>391</epage><pages>383-391</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><isbn>1900222426</isbn><isbn>9781900222426</isbn><coden>WSTED4</coden><abstract>The moving bed biofilm process is based on plastic carriers on which biomass attaches and grows. The original Kaldnes carrier was made of high-density polyethylene (density 0.95 gcm super(-1)) that could be used in filling fractions (volume of carriers in empty reactor) up to 70% that gives a specific area of 350 m super(2)m super(-3). Lately there has been an interest in the use of larger carrier elements, especially when using the process for upgrading of activated sludge plants. This paper analyses the influence of the carrier size and shape on performance, especially related to highly loaded plants working on municipal wastewater. The results demonstrate that moving bed biofilm reactors should be designed based on surface area loading rate (g COD/m super(2)d) and that shape and size of the carrier do not seem to be significant as long as the effective surface area is the same. The results indicate that very high organic loads can be used in order to remove soluble COD but that the settleability of the sludge is negatively influenced at high loading rates.</abstract><cop>London</cop><pub>IWA</pub><doi>10.2166/wst.2000.0470</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0273-1223
ispartof Water science and technology, 2000-01, Vol.41 (4-5), p.383-391
issn 0273-1223
1996-9732
language eng
recordid cdi_proquest_miscellaneous_29917792
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Activated Sludge
Applied sciences
Biofilms
Biological and medical sciences
Biological treatment of waters
Bioreactors
Biotechnology
Carrier mobility
Environment and pollution
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General purification processes
High density polyethylenes
Industrial applications and implications. Economical aspects
Load distribution
Loading rate
Municipal wastewater
Organic loading
Plants (botany)
Pollution
Polyethylene
Reactors
Shape
Sludge
Surface area
Wastewater
Wastewaters
Water treatment and pollution
title The influence of carrier size and shape in the moving bed biofilm process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A23%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20carrier%20size%20and%20shape%20in%20the%20moving%20bed%20biofilm%20process&rft.jtitle=Water%20science%20and%20technology&rft.au=%C3%98DEGAARD,%20H&rft.date=2000-01-01&rft.volume=41&rft.issue=4-5&rft.spage=383&rft.epage=391&rft.pages=383-391&rft.issn=0273-1223&rft.eissn=1996-9732&rft.isbn=1900222426&rft.isbn_list=9781900222426&rft.coden=WSTED4&rft_id=info:doi/10.2166/wst.2000.0470&rft_dat=%3Cproquest_cross%3E1943363215%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943363215&rft_id=info:pmid/&rfr_iscdi=true