Quantum Entanglement of Anisotropic Magnetic Nanodots
Physical systems for quantum computing considered at present operate at very low temperatures, typically much smaller than 1 K, but in the future it will be necessary to move towards finite-temperature mechanisms. Among the systems of current interest are spin chains and spin clusters with exchange...
Gespeichert in:
Veröffentlicht in: | Bulletin of the American Physical Society 2004-03, Vol.49 (1) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Bulletin of the American Physical Society |
container_volume | 49 |
creator | Skomski, Ralph Istomin, Andrei Y Starace, Anthony F Sellmyer, D J |
description | Physical systems for quantum computing considered at present operate at very low temperatures, typically much smaller than 1 K, but in the future it will be necessary to move towards finite-temperature mechanisms. Among the systems of current interest are spin chains and spin clusters with exchange anisotropy, where zero- and finite-temperature quantum states can be tuned by an external magnetic field [1, 2]. However, the smallness of the Bohr magneton, corresponding to 0.672 K/T, makes it difficult to exploit magnetic fields at temperatures above 4.2 K, and exchange anisotropy is a small and difficult-to-realize relativistic correction to the isotropic exchange. Here we analyze a mesoscopic two-dot system whose basic level splitting is realized by magnetocrystalline anisotropy and determine the qubit entanglement between the dot's lowest-lying states. The anisotropy is relatively easy to tune and leads to a pronounced and temperature-dependent resonant entanglement. - This research is supported by ARO, NSF-MRSEC, the W. M. Keck Foundation, and CMRA. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_29911268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29911268</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_299112683</originalsourceid><addsrcrecordid>eNqNyrsKwkAQQNEtFIyPf9jKTpjNQ0wpErFREOzDEichspmJmdn_18IPsLqnuDOTAEC2gwKyhVmKvABcXuYuMcU9etI42IrUUxdwQFLLrT1SL6wTj31jr74j1C9unvjJKmszb30Q3Py6Mttz9ThdduPE74ii9dBLgyF4Qo5Sp2XpXLo_ZH-PH7vmN-k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29911268</pqid></control><display><type>article</type><title>Quantum Entanglement of Anisotropic Magnetic Nanodots</title><source>Alma/SFX Local Collection</source><creator>Skomski, Ralph ; Istomin, Andrei Y ; Starace, Anthony F ; Sellmyer, D J</creator><creatorcontrib>Skomski, Ralph ; Istomin, Andrei Y ; Starace, Anthony F ; Sellmyer, D J</creatorcontrib><description>Physical systems for quantum computing considered at present operate at very low temperatures, typically much smaller than 1 K, but in the future it will be necessary to move towards finite-temperature mechanisms. Among the systems of current interest are spin chains and spin clusters with exchange anisotropy, where zero- and finite-temperature quantum states can be tuned by an external magnetic field [1, 2]. However, the smallness of the Bohr magneton, corresponding to 0.672 K/T, makes it difficult to exploit magnetic fields at temperatures above 4.2 K, and exchange anisotropy is a small and difficult-to-realize relativistic correction to the isotropic exchange. Here we analyze a mesoscopic two-dot system whose basic level splitting is realized by magnetocrystalline anisotropy and determine the qubit entanglement between the dot's lowest-lying states. The anisotropy is relatively easy to tune and leads to a pronounced and temperature-dependent resonant entanglement. - This research is supported by ARO, NSF-MRSEC, the W. M. Keck Foundation, and CMRA.</description><identifier>ISSN: 0003-0503</identifier><language>eng</language><ispartof>Bulletin of the American Physical Society, 2004-03, Vol.49 (1)</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Skomski, Ralph</creatorcontrib><creatorcontrib>Istomin, Andrei Y</creatorcontrib><creatorcontrib>Starace, Anthony F</creatorcontrib><creatorcontrib>Sellmyer, D J</creatorcontrib><title>Quantum Entanglement of Anisotropic Magnetic Nanodots</title><title>Bulletin of the American Physical Society</title><description>Physical systems for quantum computing considered at present operate at very low temperatures, typically much smaller than 1 K, but in the future it will be necessary to move towards finite-temperature mechanisms. Among the systems of current interest are spin chains and spin clusters with exchange anisotropy, where zero- and finite-temperature quantum states can be tuned by an external magnetic field [1, 2]. However, the smallness of the Bohr magneton, corresponding to 0.672 K/T, makes it difficult to exploit magnetic fields at temperatures above 4.2 K, and exchange anisotropy is a small and difficult-to-realize relativistic correction to the isotropic exchange. Here we analyze a mesoscopic two-dot system whose basic level splitting is realized by magnetocrystalline anisotropy and determine the qubit entanglement between the dot's lowest-lying states. The anisotropy is relatively easy to tune and leads to a pronounced and temperature-dependent resonant entanglement. - This research is supported by ARO, NSF-MRSEC, the W. M. Keck Foundation, and CMRA.</description><issn>0003-0503</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNyrsKwkAQQNEtFIyPf9jKTpjNQ0wpErFREOzDEichspmJmdn_18IPsLqnuDOTAEC2gwKyhVmKvABcXuYuMcU9etI42IrUUxdwQFLLrT1SL6wTj31jr74j1C9unvjJKmszb30Q3Py6Mttz9ThdduPE74ii9dBLgyF4Qo5Sp2XpXLo_ZH-PH7vmN-k</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Skomski, Ralph</creator><creator>Istomin, Andrei Y</creator><creator>Starace, Anthony F</creator><creator>Sellmyer, D J</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20040301</creationdate><title>Quantum Entanglement of Anisotropic Magnetic Nanodots</title><author>Skomski, Ralph ; Istomin, Andrei Y ; Starace, Anthony F ; Sellmyer, D J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_299112683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Skomski, Ralph</creatorcontrib><creatorcontrib>Istomin, Andrei Y</creatorcontrib><creatorcontrib>Starace, Anthony F</creatorcontrib><creatorcontrib>Sellmyer, D J</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Bulletin of the American Physical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skomski, Ralph</au><au>Istomin, Andrei Y</au><au>Starace, Anthony F</au><au>Sellmyer, D J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Entanglement of Anisotropic Magnetic Nanodots</atitle><jtitle>Bulletin of the American Physical Society</jtitle><date>2004-03-01</date><risdate>2004</risdate><volume>49</volume><issue>1</issue><issn>0003-0503</issn><abstract>Physical systems for quantum computing considered at present operate at very low temperatures, typically much smaller than 1 K, but in the future it will be necessary to move towards finite-temperature mechanisms. Among the systems of current interest are spin chains and spin clusters with exchange anisotropy, where zero- and finite-temperature quantum states can be tuned by an external magnetic field [1, 2]. However, the smallness of the Bohr magneton, corresponding to 0.672 K/T, makes it difficult to exploit magnetic fields at temperatures above 4.2 K, and exchange anisotropy is a small and difficult-to-realize relativistic correction to the isotropic exchange. Here we analyze a mesoscopic two-dot system whose basic level splitting is realized by magnetocrystalline anisotropy and determine the qubit entanglement between the dot's lowest-lying states. The anisotropy is relatively easy to tune and leads to a pronounced and temperature-dependent resonant entanglement. - This research is supported by ARO, NSF-MRSEC, the W. M. Keck Foundation, and CMRA.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-0503 |
ispartof | Bulletin of the American Physical Society, 2004-03, Vol.49 (1) |
issn | 0003-0503 |
language | eng |
recordid | cdi_proquest_miscellaneous_29911268 |
source | Alma/SFX Local Collection |
title | Quantum Entanglement of Anisotropic Magnetic Nanodots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A04%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Entanglement%20of%20Anisotropic%20Magnetic%20Nanodots&rft.jtitle=Bulletin%20of%20the%20American%20Physical%20Society&rft.au=Skomski,%20Ralph&rft.date=2004-03-01&rft.volume=49&rft.issue=1&rft.issn=0003-0503&rft_id=info:doi/&rft_dat=%3Cproquest%3E29911268%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29911268&rft_id=info:pmid/&rfr_iscdi=true |