Numerical indications of a q-generalised central limit theorem

We provide numerical indications of the q-generalised central limit theorem that has been conjectured (Tsallis C., Milan J. Math., 73 (2005) 145) in nonextensive statistical mechanics. We focus on N binary random variables correlated in a scale-invariant way. The correlations are introduced by impos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2006-03, Vol.73 (6), p.813-819
Hauptverfasser: Moyano, L. G, Tsallis, C, Gell-Mann, M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 819
container_issue 6
container_start_page 813
container_title Europhysics letters
container_volume 73
creator Moyano, L. G
Tsallis, C
Gell-Mann, M
description We provide numerical indications of the q-generalised central limit theorem that has been conjectured (Tsallis C., Milan J. Math., 73 (2005) 145) in nonextensive statistical mechanics. We focus on N binary random variables correlated in a scale-invariant way. The correlations are introduced by imposing the Leibnitz rule on a probability set based on the so-called q-product with q < = 1. We show that, in the large-N limit (and after appropriate centering, rescaling, and symmetrisation), the emerging distributions are qe-Gaussians, i.e., p(x) [1 - (1 - qe) beta(N)x2]1/(1 - qe), with qe = 2 - [(1)/(q)], and with coefficients beta(N) approaching finite values beta({infinity}). The particular case q = qe = 1 recovers the celebrated de Moivre-Laplace theorem.
doi_str_mv 10.1209/epl/i2005-10487-1
format Article
fullrecord <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_29909840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29909840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-930834b14e4cb76ae24c461955ce718dee7a0863ad1dfa54eb5b03a99bf8a9a93</originalsourceid><addsrcrecordid>eNp1kL1OwzAYRS0EEqXwAGyZkJAw9Rfbsb0goYo_qYIFZstxvoBR_mqnA29P2iIWxHTvcO4dDiHnwK4hZ2aBQ7MIOWOSAhNaUTggM8h1QYWW4pDMWG4klUzJY3KS0idjABqKGbl53rQYg3dNFrpqyjH0Xcr6OnPZmr5jh9E1IWGVeezGqWdNaMOYjR_YR2xPyVHtmoRnPzknb_d3r8tHunp5eFrerqjnQo3UcKa5KEGg8KUqHObCiwKMlB4V6ApROaYL7iqoaicFlrJk3BlT1toZZ_icXOx_h9ivN5hG24bksWlch_0m2dwYZrRgEwh70Mc-pYi1HWJoXfyywOzWlJ1M2Z0puzNlYdpc7jehH37xrTC7FWYVt4XVwO1Q1RN79Zf9__obkSB3_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29909840</pqid></control><display><type>article</type><title>Numerical indications of a q-generalised central limit theorem</title><source>IOP Publishing Journals</source><creator>Moyano, L. G ; Tsallis, C ; Gell-Mann, M</creator><creatorcontrib>Moyano, L. G ; Tsallis, C ; Gell-Mann, M</creatorcontrib><description>We provide numerical indications of the q-generalised central limit theorem that has been conjectured (Tsallis C., Milan J. Math., 73 (2005) 145) in nonextensive statistical mechanics. We focus on N binary random variables correlated in a scale-invariant way. The correlations are introduced by imposing the Leibnitz rule on a probability set based on the so-called q-product with q &lt; = 1. We show that, in the large-N limit (and after appropriate centering, rescaling, and symmetrisation), the emerging distributions are qe-Gaussians, i.e., p(x) [1 - (1 - qe) beta(N)x2]1/(1 - qe), with qe = 2 - [(1)/(q)], and with coefficients beta(N) approaching finite values beta({infinity}). The particular case q = qe = 1 recovers the celebrated de Moivre-Laplace theorem.</description><identifier>ISSN: 0295-5075</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/epl/i2005-10487-1</identifier><language>eng</language><publisher>IOP Publishing</publisher><ispartof>Europhysics letters, 2006-03, Vol.73 (6), p.813-819</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-930834b14e4cb76ae24c461955ce718dee7a0863ad1dfa54eb5b03a99bf8a9a93</citedby><cites>FETCH-LOGICAL-c347t-930834b14e4cb76ae24c461955ce718dee7a0863ad1dfa54eb5b03a99bf8a9a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1209/epl/i2005-10487-1/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53910</link.rule.ids></links><search><creatorcontrib>Moyano, L. G</creatorcontrib><creatorcontrib>Tsallis, C</creatorcontrib><creatorcontrib>Gell-Mann, M</creatorcontrib><title>Numerical indications of a q-generalised central limit theorem</title><title>Europhysics letters</title><description>We provide numerical indications of the q-generalised central limit theorem that has been conjectured (Tsallis C., Milan J. Math., 73 (2005) 145) in nonextensive statistical mechanics. We focus on N binary random variables correlated in a scale-invariant way. The correlations are introduced by imposing the Leibnitz rule on a probability set based on the so-called q-product with q &lt; = 1. We show that, in the large-N limit (and after appropriate centering, rescaling, and symmetrisation), the emerging distributions are qe-Gaussians, i.e., p(x) [1 - (1 - qe) beta(N)x2]1/(1 - qe), with qe = 2 - [(1)/(q)], and with coefficients beta(N) approaching finite values beta({infinity}). The particular case q = qe = 1 recovers the celebrated de Moivre-Laplace theorem.</description><issn>0295-5075</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAYRS0EEqXwAGyZkJAw9Rfbsb0goYo_qYIFZstxvoBR_mqnA29P2iIWxHTvcO4dDiHnwK4hZ2aBQ7MIOWOSAhNaUTggM8h1QYWW4pDMWG4klUzJY3KS0idjABqKGbl53rQYg3dNFrpqyjH0Xcr6OnPZmr5jh9E1IWGVeezGqWdNaMOYjR_YR2xPyVHtmoRnPzknb_d3r8tHunp5eFrerqjnQo3UcKa5KEGg8KUqHObCiwKMlB4V6ApROaYL7iqoaicFlrJk3BlT1toZZ_icXOx_h9ivN5hG24bksWlch_0m2dwYZrRgEwh70Mc-pYi1HWJoXfyywOzWlJ1M2Z0puzNlYdpc7jehH37xrTC7FWYVt4XVwO1Q1RN79Zf9__obkSB3_w</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Moyano, L. G</creator><creator>Tsallis, C</creator><creator>Gell-Mann, M</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20060301</creationdate><title>Numerical indications of a q-generalised central limit theorem</title><author>Moyano, L. G ; Tsallis, C ; Gell-Mann, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-930834b14e4cb76ae24c461955ce718dee7a0863ad1dfa54eb5b03a99bf8a9a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moyano, L. G</creatorcontrib><creatorcontrib>Tsallis, C</creatorcontrib><creatorcontrib>Gell-Mann, M</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moyano, L. G</au><au>Tsallis, C</au><au>Gell-Mann, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical indications of a q-generalised central limit theorem</atitle><jtitle>Europhysics letters</jtitle><date>2006-03-01</date><risdate>2006</risdate><volume>73</volume><issue>6</issue><spage>813</spage><epage>819</epage><pages>813-819</pages><issn>0295-5075</issn><eissn>1286-4854</eissn><abstract>We provide numerical indications of the q-generalised central limit theorem that has been conjectured (Tsallis C., Milan J. Math., 73 (2005) 145) in nonextensive statistical mechanics. We focus on N binary random variables correlated in a scale-invariant way. The correlations are introduced by imposing the Leibnitz rule on a probability set based on the so-called q-product with q &lt; = 1. We show that, in the large-N limit (and after appropriate centering, rescaling, and symmetrisation), the emerging distributions are qe-Gaussians, i.e., p(x) [1 - (1 - qe) beta(N)x2]1/(1 - qe), with qe = 2 - [(1)/(q)], and with coefficients beta(N) approaching finite values beta({infinity}). The particular case q = qe = 1 recovers the celebrated de Moivre-Laplace theorem.</abstract><pub>IOP Publishing</pub><doi>10.1209/epl/i2005-10487-1</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0295-5075
ispartof Europhysics letters, 2006-03, Vol.73 (6), p.813-819
issn 0295-5075
1286-4854
language eng
recordid cdi_proquest_miscellaneous_29909840
source IOP Publishing Journals
title Numerical indications of a q-generalised central limit theorem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A18%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20indications%20of%20a%20q-generalised%20central%20limit%20theorem&rft.jtitle=Europhysics%20letters&rft.au=Moyano,%20L.%20G&rft.date=2006-03-01&rft.volume=73&rft.issue=6&rft.spage=813&rft.epage=819&rft.pages=813-819&rft.issn=0295-5075&rft.eissn=1286-4854&rft_id=info:doi/10.1209/epl/i2005-10487-1&rft_dat=%3Cproquest_iop_p%3E29909840%3C/proquest_iop_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29909840&rft_id=info:pmid/&rfr_iscdi=true