Parameter estimation and statistical analysis on frequency-dependent active control forces
The active control forces of an active magnetic bearing (AMB) system are known to be frequency dependent in nature. This is due to the frequency-dependent nature of the AMB system, i.e. time lags in sensors, digital signal processing, amplifiers, filters, and eddy current and hysteresis losses in th...
Gespeichert in:
Veröffentlicht in: | Mechanical systems and signal processing 2007-07, Vol.21 (5), p.2112-2124 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2124 |
---|---|
container_issue | 5 |
container_start_page | 2112 |
container_title | Mechanical systems and signal processing |
container_volume | 21 |
creator | Lim, Tau Meng Cheng, Shanbao |
description | The active control forces of an active magnetic bearing (AMB) system are known to be frequency dependent in nature. This is due to the frequency-dependent nature of the AMB system, i.e. time lags in sensors, digital signal processing, amplifiers, filters, and eddy current and hysteresis losses in the electromagnetic coils. The stiffness and damping coefficients of these control forces can be assumed to be linear for small limit of perturbations within the air gap. Numerous studies have also attempted to estimate these coefficients directly or indirectly without validating the model and verifying the results.
This paper seeks to address these issues, by proposing a one-axis electromagnetic suspension system to simplify the measurement requirements and eliminate the possibility of control force cross-coupling capabilities. It also proposes an on-line frequency domain parameter estimation procedure with statistical information to provide a quantitative measure for model validation and results verification purposes. This would lead to a better understanding and a design platform for optimal vibration control scheme for suspended system. This is achieved by injecting Schroeder Phased Harmonic Sequences (SPHS), a multi-frequency test signal, to persistently excite all possible suspended system modes. By treating the system as a black box, the parameter estimation of the “actual” stiffness and damping coefficients in the frequency domain are realised experimentally. The digitally implemented PID controller also facilitated changes on the feedback gains, and this allowed numerous system response measurements with their corresponding estimated stiffness and damping coefficients. |
doi_str_mv | 10.1016/j.ymssp.2006.09.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29909399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327006001919</els_id><sourcerecordid>29909399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-9fbfcb34ad4879dc0d877f37fcd4c25a2576b971ab89bb54fb08bef5724d7a663</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EEsvjC2jSQJcwzsOOCwqEeElIUEBDYzn2WPIqmyweg7R_j5dFoqPy2HPnju9h7IxDxYGLy2W1WRGtqxpAVKAqgG6PLTgoUfKai322gL7vy6aWcMiOiJYAoFoQC_b-YqJZYcJYIKWwMinMU2EmV1DKdX6yZsx3M24oUJF7PuLHJ052Uzpc4-RwSoWxKXxhYecpxXks_Bwt0gk78GYkPP09j9nb3e3rzUP59Hz_eHP9VNpGtKlUfvB2aFrj2l4qZ8H1UvpGeutaW3em7qQYlORm6NUwdK0foB_Qd7JunTRCNMfsYue7jnP-GSW9CmRxHM2E8yfpWilQjVJZ2OyENs5EEb1ex5w4bjQHveWol_qHo95y1KB05pinzn_tDWUWPprJBvob7SVXSm7dr3Y6zFm_AkZNNmRO6EJEm7Sbw797vgEyY40P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29909399</pqid></control><display><type>article</type><title>Parameter estimation and statistical analysis on frequency-dependent active control forces</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Lim, Tau Meng ; Cheng, Shanbao</creator><creatorcontrib>Lim, Tau Meng ; Cheng, Shanbao</creatorcontrib><description>The active control forces of an active magnetic bearing (AMB) system are known to be frequency dependent in nature. This is due to the frequency-dependent nature of the AMB system, i.e. time lags in sensors, digital signal processing, amplifiers, filters, and eddy current and hysteresis losses in the electromagnetic coils. The stiffness and damping coefficients of these control forces can be assumed to be linear for small limit of perturbations within the air gap. Numerous studies have also attempted to estimate these coefficients directly or indirectly without validating the model and verifying the results.
This paper seeks to address these issues, by proposing a one-axis electromagnetic suspension system to simplify the measurement requirements and eliminate the possibility of control force cross-coupling capabilities. It also proposes an on-line frequency domain parameter estimation procedure with statistical information to provide a quantitative measure for model validation and results verification purposes. This would lead to a better understanding and a design platform for optimal vibration control scheme for suspended system. This is achieved by injecting Schroeder Phased Harmonic Sequences (SPHS), a multi-frequency test signal, to persistently excite all possible suspended system modes. By treating the system as a black box, the parameter estimation of the “actual” stiffness and damping coefficients in the frequency domain are realised experimentally. The digitally implemented PID controller also facilitated changes on the feedback gains, and this allowed numerous system response measurements with their corresponding estimated stiffness and damping coefficients.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2006.09.005</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Applied sciences ; Bearings, bushings, rolling bearings ; Computer science; control theory; systems ; Control theory. Systems ; Drives ; Electromagnetic actuator ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mechanical engineering. Machine design ; Modelling and identification ; Optimal control ; Parameter estimation ; Physics ; PID controller ; Solid mechanics ; Statistical information ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Mechanical systems and signal processing, 2007-07, Vol.21 (5), p.2112-2124</ispartof><rights>2006 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-9fbfcb34ad4879dc0d877f37fcd4c25a2576b971ab89bb54fb08bef5724d7a663</citedby><cites>FETCH-LOGICAL-c364t-9fbfcb34ad4879dc0d877f37fcd4c25a2576b971ab89bb54fb08bef5724d7a663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymssp.2006.09.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18719979$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lim, Tau Meng</creatorcontrib><creatorcontrib>Cheng, Shanbao</creatorcontrib><title>Parameter estimation and statistical analysis on frequency-dependent active control forces</title><title>Mechanical systems and signal processing</title><description>The active control forces of an active magnetic bearing (AMB) system are known to be frequency dependent in nature. This is due to the frequency-dependent nature of the AMB system, i.e. time lags in sensors, digital signal processing, amplifiers, filters, and eddy current and hysteresis losses in the electromagnetic coils. The stiffness and damping coefficients of these control forces can be assumed to be linear for small limit of perturbations within the air gap. Numerous studies have also attempted to estimate these coefficients directly or indirectly without validating the model and verifying the results.
This paper seeks to address these issues, by proposing a one-axis electromagnetic suspension system to simplify the measurement requirements and eliminate the possibility of control force cross-coupling capabilities. It also proposes an on-line frequency domain parameter estimation procedure with statistical information to provide a quantitative measure for model validation and results verification purposes. This would lead to a better understanding and a design platform for optimal vibration control scheme for suspended system. This is achieved by injecting Schroeder Phased Harmonic Sequences (SPHS), a multi-frequency test signal, to persistently excite all possible suspended system modes. By treating the system as a black box, the parameter estimation of the “actual” stiffness and damping coefficients in the frequency domain are realised experimentally. The digitally implemented PID controller also facilitated changes on the feedback gains, and this allowed numerous system response measurements with their corresponding estimated stiffness and damping coefficients.</description><subject>Applied sciences</subject><subject>Bearings, bushings, rolling bearings</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Drives</subject><subject>Electromagnetic actuator</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mechanical engineering. Machine design</subject><subject>Modelling and identification</subject><subject>Optimal control</subject><subject>Parameter estimation</subject><subject>Physics</subject><subject>PID controller</subject><subject>Solid mechanics</subject><subject>Statistical information</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxDAQRS0EEsvjC2jSQJcwzsOOCwqEeElIUEBDYzn2WPIqmyweg7R_j5dFoqPy2HPnju9h7IxDxYGLy2W1WRGtqxpAVKAqgG6PLTgoUfKai322gL7vy6aWcMiOiJYAoFoQC_b-YqJZYcJYIKWwMinMU2EmV1DKdX6yZsx3M24oUJF7PuLHJ052Uzpc4-RwSoWxKXxhYecpxXks_Bwt0gk78GYkPP09j9nb3e3rzUP59Hz_eHP9VNpGtKlUfvB2aFrj2l4qZ8H1UvpGeutaW3em7qQYlORm6NUwdK0foB_Qd7JunTRCNMfsYue7jnP-GSW9CmRxHM2E8yfpWilQjVJZ2OyENs5EEb1ex5w4bjQHveWol_qHo95y1KB05pinzn_tDWUWPprJBvob7SVXSm7dr3Y6zFm_AkZNNmRO6EJEm7Sbw797vgEyY40P</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Lim, Tau Meng</creator><creator>Cheng, Shanbao</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070701</creationdate><title>Parameter estimation and statistical analysis on frequency-dependent active control forces</title><author>Lim, Tau Meng ; Cheng, Shanbao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-9fbfcb34ad4879dc0d877f37fcd4c25a2576b971ab89bb54fb08bef5724d7a663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Bearings, bushings, rolling bearings</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Drives</topic><topic>Electromagnetic actuator</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mechanical engineering. Machine design</topic><topic>Modelling and identification</topic><topic>Optimal control</topic><topic>Parameter estimation</topic><topic>Physics</topic><topic>PID controller</topic><topic>Solid mechanics</topic><topic>Statistical information</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Tau Meng</creatorcontrib><creatorcontrib>Cheng, Shanbao</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Tau Meng</au><au>Cheng, Shanbao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter estimation and statistical analysis on frequency-dependent active control forces</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>21</volume><issue>5</issue><spage>2112</spage><epage>2124</epage><pages>2112-2124</pages><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>The active control forces of an active magnetic bearing (AMB) system are known to be frequency dependent in nature. This is due to the frequency-dependent nature of the AMB system, i.e. time lags in sensors, digital signal processing, amplifiers, filters, and eddy current and hysteresis losses in the electromagnetic coils. The stiffness and damping coefficients of these control forces can be assumed to be linear for small limit of perturbations within the air gap. Numerous studies have also attempted to estimate these coefficients directly or indirectly without validating the model and verifying the results.
This paper seeks to address these issues, by proposing a one-axis electromagnetic suspension system to simplify the measurement requirements and eliminate the possibility of control force cross-coupling capabilities. It also proposes an on-line frequency domain parameter estimation procedure with statistical information to provide a quantitative measure for model validation and results verification purposes. This would lead to a better understanding and a design platform for optimal vibration control scheme for suspended system. This is achieved by injecting Schroeder Phased Harmonic Sequences (SPHS), a multi-frequency test signal, to persistently excite all possible suspended system modes. By treating the system as a black box, the parameter estimation of the “actual” stiffness and damping coefficients in the frequency domain are realised experimentally. The digitally implemented PID controller also facilitated changes on the feedback gains, and this allowed numerous system response measurements with their corresponding estimated stiffness and damping coefficients.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2006.09.005</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-3270 |
ispartof | Mechanical systems and signal processing, 2007-07, Vol.21 (5), p.2112-2124 |
issn | 0888-3270 1096-1216 |
language | eng |
recordid | cdi_proquest_miscellaneous_29909399 |
source | ScienceDirect Freedom Collection (Elsevier) |
subjects | Applied sciences Bearings, bushings, rolling bearings Computer science control theory systems Control theory. Systems Drives Electromagnetic actuator Exact sciences and technology Fundamental areas of phenomenology (including applications) Mechanical engineering. Machine design Modelling and identification Optimal control Parameter estimation Physics PID controller Solid mechanics Statistical information Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
title | Parameter estimation and statistical analysis on frequency-dependent active control forces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20estimation%20and%20statistical%20analysis%20on%20frequency-dependent%20active%20control%20forces&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Lim,%20Tau%20Meng&rft.date=2007-07-01&rft.volume=21&rft.issue=5&rft.spage=2112&rft.epage=2124&rft.pages=2112-2124&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2006.09.005&rft_dat=%3Cproquest_cross%3E29909399%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29909399&rft_id=info:pmid/&rft_els_id=S0888327006001919&rfr_iscdi=true |