Poly(3-hexylthiophene) Fibers for Photovoltaic Applications
A new method for the preparation of active layers of polymeric solar cells without the need for thermal post‐treatment to obtain optimal performance is presented. Poly(3‐hexylthiophene) (P3HT) nanofibers are obtained in highly concentrated solutions, which enables the fabrication of nanostructured f...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2007-05, Vol.17 (8), p.1377-1384 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1384 |
---|---|
container_issue | 8 |
container_start_page | 1377 |
container_title | Advanced functional materials |
container_volume | 17 |
creator | Berson, S. De Bettignies, R. Bailly, S. Guillerez, S. |
description | A new method for the preparation of active layers of polymeric solar cells without the need for thermal post‐treatment to obtain optimal performance is presented. Poly(3‐hexylthiophene) (P3HT) nanofibers are obtained in highly concentrated solutions, which enables the fabrication of nanostructured films on various substrates. Here, the preparation of these fibers along with their characterization in solution and in the solid state is detailed. By mixing these nanofibers with a molecular acceptor such as [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) in solution, it is possible to obtain in a simple process a highly efficient active layer for organic solar cells with a demonstrated power conversion efficiency (PCE) of up to 3.6 %. The compatibility of the room‐temperature process developed herein with commonly used plastic substrates may lead to applications such as the development of large‐area flexible solar cells.
Highly concentrated solutions of poly(3‐hexylthiophene) nanofibers are obtained in p‐xylene and used to fabricate ordered layers of nanofibers on various substrates without any thermal treatment. The figure shows an atomic force microscopy image of a network of these fibers. The fibers are used in the active layer of photovoltaic devices, and a maximum power conversion efficiency of 3.6 % is achieved for a solar cell based on a layer with a 75 wt % of fibers. |
doi_str_mv | 10.1002/adfm.200600922 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29904798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29904798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4242-4dc28ebad59dbb658bdc9372c641a2b4ebbf690ae383ac91f98ad519fdc4c5603</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0EEqWwMmdCMKT4FScWUwW0RSpQoSK6WY7jKAa3DnYKzb-nVVDFxnTvcM43HADOERwgCPG1LMrlAEPIIOQYH4AeYojFBOLscP-jxTE4CeEdQpSmhPbAzczZ9pLEld60tqmMqyu90lfRyOTah6h0PppVrnFfzjbSqGhY19Yo2Ri3CqfgqJQ26LPf2wevo_v57SSePo8fbofTWFFMcUwLhTOdyyLhRZ6zJMsLxUmKFaNI4pzqPC8Zh1KTjEjFUcmzLYt4WSiqEgZJH1x0u7V3n2sdGrE0QWlr5Uq7dRCYc0hTnm3BQQcq70LwuhS1N0vpW4Gg2DUSu0Zi32gr8E74Nla3_9BieDd6_OvGnWtCozd7V_oPwVKSJuLtaSym88Vk8jJPxIL8ANPQeyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29904798</pqid></control><display><type>article</type><title>Poly(3-hexylthiophene) Fibers for Photovoltaic Applications</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Berson, S. ; De Bettignies, R. ; Bailly, S. ; Guillerez, S.</creator><creatorcontrib>Berson, S. ; De Bettignies, R. ; Bailly, S. ; Guillerez, S.</creatorcontrib><description>A new method for the preparation of active layers of polymeric solar cells without the need for thermal post‐treatment to obtain optimal performance is presented. Poly(3‐hexylthiophene) (P3HT) nanofibers are obtained in highly concentrated solutions, which enables the fabrication of nanostructured films on various substrates. Here, the preparation of these fibers along with their characterization in solution and in the solid state is detailed. By mixing these nanofibers with a molecular acceptor such as [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) in solution, it is possible to obtain in a simple process a highly efficient active layer for organic solar cells with a demonstrated power conversion efficiency (PCE) of up to 3.6 %. The compatibility of the room‐temperature process developed herein with commonly used plastic substrates may lead to applications such as the development of large‐area flexible solar cells.
Highly concentrated solutions of poly(3‐hexylthiophene) nanofibers are obtained in p‐xylene and used to fabricate ordered layers of nanofibers on various substrates without any thermal treatment. The figure shows an atomic force microscopy image of a network of these fibers. The fibers are used in the active layer of photovoltaic devices, and a maximum power conversion efficiency of 3.6 % is achieved for a solar cell based on a layer with a 75 wt % of fibers.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.200600922</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Conducting polymers ; heterojunction ; Heterojunctions ; Nanofibers ; Nanofibers, polymer ; Photovoltaic devices ; polymer ; Polythiophenes ; Solar cells ; Solar cells, heterojunction</subject><ispartof>Advanced functional materials, 2007-05, Vol.17 (8), p.1377-1384</ispartof><rights>Copyright © 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4242-4dc28ebad59dbb658bdc9372c641a2b4ebbf690ae383ac91f98ad519fdc4c5603</citedby><cites>FETCH-LOGICAL-c4242-4dc28ebad59dbb658bdc9372c641a2b4ebbf690ae383ac91f98ad519fdc4c5603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.200600922$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.200600922$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Berson, S.</creatorcontrib><creatorcontrib>De Bettignies, R.</creatorcontrib><creatorcontrib>Bailly, S.</creatorcontrib><creatorcontrib>Guillerez, S.</creatorcontrib><title>Poly(3-hexylthiophene) Fibers for Photovoltaic Applications</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>A new method for the preparation of active layers of polymeric solar cells without the need for thermal post‐treatment to obtain optimal performance is presented. Poly(3‐hexylthiophene) (P3HT) nanofibers are obtained in highly concentrated solutions, which enables the fabrication of nanostructured films on various substrates. Here, the preparation of these fibers along with their characterization in solution and in the solid state is detailed. By mixing these nanofibers with a molecular acceptor such as [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) in solution, it is possible to obtain in a simple process a highly efficient active layer for organic solar cells with a demonstrated power conversion efficiency (PCE) of up to 3.6 %. The compatibility of the room‐temperature process developed herein with commonly used plastic substrates may lead to applications such as the development of large‐area flexible solar cells.
Highly concentrated solutions of poly(3‐hexylthiophene) nanofibers are obtained in p‐xylene and used to fabricate ordered layers of nanofibers on various substrates without any thermal treatment. The figure shows an atomic force microscopy image of a network of these fibers. The fibers are used in the active layer of photovoltaic devices, and a maximum power conversion efficiency of 3.6 % is achieved for a solar cell based on a layer with a 75 wt % of fibers.</description><subject>Conducting polymers</subject><subject>heterojunction</subject><subject>Heterojunctions</subject><subject>Nanofibers</subject><subject>Nanofibers, polymer</subject><subject>Photovoltaic devices</subject><subject>polymer</subject><subject>Polythiophenes</subject><subject>Solar cells</subject><subject>Solar cells, heterojunction</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAURi0EEqWwMmdCMKT4FScWUwW0RSpQoSK6WY7jKAa3DnYKzb-nVVDFxnTvcM43HADOERwgCPG1LMrlAEPIIOQYH4AeYojFBOLscP-jxTE4CeEdQpSmhPbAzczZ9pLEld60tqmMqyu90lfRyOTah6h0PppVrnFfzjbSqGhY19Yo2Ri3CqfgqJQ26LPf2wevo_v57SSePo8fbofTWFFMcUwLhTOdyyLhRZ6zJMsLxUmKFaNI4pzqPC8Zh1KTjEjFUcmzLYt4WSiqEgZJH1x0u7V3n2sdGrE0QWlr5Uq7dRCYc0hTnm3BQQcq70LwuhS1N0vpW4Gg2DUSu0Zi32gr8E74Nla3_9BieDd6_OvGnWtCozd7V_oPwVKSJuLtaSym88Vk8jJPxIL8ANPQeyo</recordid><startdate>20070521</startdate><enddate>20070521</enddate><creator>Berson, S.</creator><creator>De Bettignies, R.</creator><creator>Bailly, S.</creator><creator>Guillerez, S.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20070521</creationdate><title>Poly(3-hexylthiophene) Fibers for Photovoltaic Applications</title><author>Berson, S. ; De Bettignies, R. ; Bailly, S. ; Guillerez, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4242-4dc28ebad59dbb658bdc9372c641a2b4ebbf690ae383ac91f98ad519fdc4c5603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Conducting polymers</topic><topic>heterojunction</topic><topic>Heterojunctions</topic><topic>Nanofibers</topic><topic>Nanofibers, polymer</topic><topic>Photovoltaic devices</topic><topic>polymer</topic><topic>Polythiophenes</topic><topic>Solar cells</topic><topic>Solar cells, heterojunction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berson, S.</creatorcontrib><creatorcontrib>De Bettignies, R.</creatorcontrib><creatorcontrib>Bailly, S.</creatorcontrib><creatorcontrib>Guillerez, S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berson, S.</au><au>De Bettignies, R.</au><au>Bailly, S.</au><au>Guillerez, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly(3-hexylthiophene) Fibers for Photovoltaic Applications</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2007-05-21</date><risdate>2007</risdate><volume>17</volume><issue>8</issue><spage>1377</spage><epage>1384</epage><pages>1377-1384</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>A new method for the preparation of active layers of polymeric solar cells without the need for thermal post‐treatment to obtain optimal performance is presented. Poly(3‐hexylthiophene) (P3HT) nanofibers are obtained in highly concentrated solutions, which enables the fabrication of nanostructured films on various substrates. Here, the preparation of these fibers along with their characterization in solution and in the solid state is detailed. By mixing these nanofibers with a molecular acceptor such as [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) in solution, it is possible to obtain in a simple process a highly efficient active layer for organic solar cells with a demonstrated power conversion efficiency (PCE) of up to 3.6 %. The compatibility of the room‐temperature process developed herein with commonly used plastic substrates may lead to applications such as the development of large‐area flexible solar cells.
Highly concentrated solutions of poly(3‐hexylthiophene) nanofibers are obtained in p‐xylene and used to fabricate ordered layers of nanofibers on various substrates without any thermal treatment. The figure shows an atomic force microscopy image of a network of these fibers. The fibers are used in the active layer of photovoltaic devices, and a maximum power conversion efficiency of 3.6 % is achieved for a solar cell based on a layer with a 75 wt % of fibers.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.200600922</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2007-05, Vol.17 (8), p.1377-1384 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_miscellaneous_29904798 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Conducting polymers heterojunction Heterojunctions Nanofibers Nanofibers, polymer Photovoltaic devices polymer Polythiophenes Solar cells Solar cells, heterojunction |
title | Poly(3-hexylthiophene) Fibers for Photovoltaic Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(3-hexylthiophene)%20Fibers%20for%20Photovoltaic%20Applications&rft.jtitle=Advanced%20functional%20materials&rft.au=Berson,%20S.&rft.date=2007-05-21&rft.volume=17&rft.issue=8&rft.spage=1377&rft.epage=1384&rft.pages=1377-1384&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.200600922&rft_dat=%3Cproquest_cross%3E29904798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29904798&rft_id=info:pmid/&rfr_iscdi=true |