Non-wetting crystal growth of Mg2Si by vertical Bridgman method and thermoelectric characteristics

Magnesium siliside (Mg2Si) crystals have been grown using the vertical Bridgman method in a non-wetting growth environment, achieved by the use of an anti-adhesion coating on the crucible wall. The minimized adhesion of highly reactive molten magnesium (Mg), silicon (Si) and Mg2Si permitted easy rem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2007-06, Vol.304 (1), p.196-201
Hauptverfasser: AKASAKA, Masayasu, IIDA, Tsutomu, NEMOTO, Takashi, SOGA, Junichi, SATO, Junichi, MAKINO, Kenichiro, FUKANO, Masataka, TAKANASHI, Yoshifumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue 1
container_start_page 196
container_title Journal of crystal growth
container_volume 304
creator AKASAKA, Masayasu
IIDA, Tsutomu
NEMOTO, Takashi
SOGA, Junichi
SATO, Junichi
MAKINO, Kenichiro
FUKANO, Masataka
TAKANASHI, Yoshifumi
description Magnesium siliside (Mg2Si) crystals have been grown using the vertical Bridgman method in a non-wetting growth environment, achieved by the use of an anti-adhesion coating on the crucible wall. The minimized adhesion of highly reactive molten magnesium (Mg), silicon (Si) and Mg2Si permitted easy removal of the grown ingot from the crucible, and the external shape of the grown ingot followed the shape of inner wall of the crucible. The grown crystals were a single phase of polycrystalline Mg2Si. X-ray analysis, such as Laue back-reflection and Lang transmission topographs revealed that grains obtained were single crystal in nature. Process induced contaminants were investigated by using grow discharge mass spectrometry (GDMS). The grown crystals exhibited n-type conductivity, which could result from the residual impurities in the Mg source material used and unintentional impurity incorporation during growth. Since Mg2Si is a material candidate for thermal-to-electric energy-conversion, the thermoelectric properties such as Seebeck coefficient, S, electrical conductivity, sigma, and thermal conductivity, kappa, were measured as a function of temperature up to 873K. Die-casting process induced characteristics of such thermoelectric properties are discussed. The maximum dimensionless figure-of-merit was estimated to be 0.17 at 656K.
doi_str_mv 10.1016/j.jcrysgro.2006.10.270
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29901084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29901084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-6087c44f9b64ead3a8571d62ae2d064bc5142ef55c5fe65df54044f951a1cea13</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhC0EEqXwF5AvcEtZO7HjHqHiJRU4AOfIdTaJqzyKbaj673HUIi670uzMrPQRcslgxoDJm_VsbdzO126YcQAZxRnP4YhMmMrTRADwYzKJkyfAM3VKzrxfA8QkgwlZvQ59ssUQbF_TsSbolsaqbWjoUNGXmr9butrRH3TBmni7c7asO93TDkMzlFT3JQ0Num7AFk1w1lDTaKdNQGd9zPhzclLp1uPFYU_J58P9x-IpWb49Pi9ul4lJFQ-JBJWbLKvmK5mhLlOtRM5KyTXyEmS2MoJlHCshjKhQirISGYx2wTQzqFk6Jdf73o0bvr7Rh6Kz3mDb6h6Hb1_w-RwYqCwa5d5o3OC9w6rYONtptysYFCPSYl38IS1GpKMekcbg1eGD9pFF5XRvrP9Pq1yqFFT6C3aFe9I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29901084</pqid></control><display><type>article</type><title>Non-wetting crystal growth of Mg2Si by vertical Bridgman method and thermoelectric characteristics</title><source>Elsevier ScienceDirect Journals</source><creator>AKASAKA, Masayasu ; IIDA, Tsutomu ; NEMOTO, Takashi ; SOGA, Junichi ; SATO, Junichi ; MAKINO, Kenichiro ; FUKANO, Masataka ; TAKANASHI, Yoshifumi</creator><creatorcontrib>AKASAKA, Masayasu ; IIDA, Tsutomu ; NEMOTO, Takashi ; SOGA, Junichi ; SATO, Junichi ; MAKINO, Kenichiro ; FUKANO, Masataka ; TAKANASHI, Yoshifumi</creatorcontrib><description>Magnesium siliside (Mg2Si) crystals have been grown using the vertical Bridgman method in a non-wetting growth environment, achieved by the use of an anti-adhesion coating on the crucible wall. The minimized adhesion of highly reactive molten magnesium (Mg), silicon (Si) and Mg2Si permitted easy removal of the grown ingot from the crucible, and the external shape of the grown ingot followed the shape of inner wall of the crucible. The grown crystals were a single phase of polycrystalline Mg2Si. X-ray analysis, such as Laue back-reflection and Lang transmission topographs revealed that grains obtained were single crystal in nature. Process induced contaminants were investigated by using grow discharge mass spectrometry (GDMS). The grown crystals exhibited n-type conductivity, which could result from the residual impurities in the Mg source material used and unintentional impurity incorporation during growth. Since Mg2Si is a material candidate for thermal-to-electric energy-conversion, the thermoelectric properties such as Seebeck coefficient, S, electrical conductivity, sigma, and thermal conductivity, kappa, were measured as a function of temperature up to 873K. Die-casting process induced characteristics of such thermoelectric properties are discussed. The maximum dimensionless figure-of-merit was estimated to be 0.17 at 656K.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2006.10.270</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Growth from melts; zone melting and refining ; Materials science ; Methods of crystal growth; physics of crystal growth ; Physics ; Solid-fluid interfaces ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation ; Wetting</subject><ispartof>Journal of crystal growth, 2007-06, Vol.304 (1), p.196-201</ispartof><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-6087c44f9b64ead3a8571d62ae2d064bc5142ef55c5fe65df54044f951a1cea13</citedby><cites>FETCH-LOGICAL-c382t-6087c44f9b64ead3a8571d62ae2d064bc5142ef55c5fe65df54044f951a1cea13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18768308$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>AKASAKA, Masayasu</creatorcontrib><creatorcontrib>IIDA, Tsutomu</creatorcontrib><creatorcontrib>NEMOTO, Takashi</creatorcontrib><creatorcontrib>SOGA, Junichi</creatorcontrib><creatorcontrib>SATO, Junichi</creatorcontrib><creatorcontrib>MAKINO, Kenichiro</creatorcontrib><creatorcontrib>FUKANO, Masataka</creatorcontrib><creatorcontrib>TAKANASHI, Yoshifumi</creatorcontrib><title>Non-wetting crystal growth of Mg2Si by vertical Bridgman method and thermoelectric characteristics</title><title>Journal of crystal growth</title><description>Magnesium siliside (Mg2Si) crystals have been grown using the vertical Bridgman method in a non-wetting growth environment, achieved by the use of an anti-adhesion coating on the crucible wall. The minimized adhesion of highly reactive molten magnesium (Mg), silicon (Si) and Mg2Si permitted easy removal of the grown ingot from the crucible, and the external shape of the grown ingot followed the shape of inner wall of the crucible. The grown crystals were a single phase of polycrystalline Mg2Si. X-ray analysis, such as Laue back-reflection and Lang transmission topographs revealed that grains obtained were single crystal in nature. Process induced contaminants were investigated by using grow discharge mass spectrometry (GDMS). The grown crystals exhibited n-type conductivity, which could result from the residual impurities in the Mg source material used and unintentional impurity incorporation during growth. Since Mg2Si is a material candidate for thermal-to-electric energy-conversion, the thermoelectric properties such as Seebeck coefficient, S, electrical conductivity, sigma, and thermal conductivity, kappa, were measured as a function of temperature up to 873K. Die-casting process induced characteristics of such thermoelectric properties are discussed. The maximum dimensionless figure-of-merit was estimated to be 0.17 at 656K.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Growth from melts; zone melting and refining</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Physics</subject><subject>Solid-fluid interfaces</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><subject>Wetting</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpFkEtPwzAQhC0EEqXwF5AvcEtZO7HjHqHiJRU4AOfIdTaJqzyKbaj673HUIi670uzMrPQRcslgxoDJm_VsbdzO126YcQAZxRnP4YhMmMrTRADwYzKJkyfAM3VKzrxfA8QkgwlZvQ59ssUQbF_TsSbolsaqbWjoUNGXmr9butrRH3TBmni7c7asO93TDkMzlFT3JQ0Num7AFk1w1lDTaKdNQGd9zPhzclLp1uPFYU_J58P9x-IpWb49Pi9ul4lJFQ-JBJWbLKvmK5mhLlOtRM5KyTXyEmS2MoJlHCshjKhQirISGYx2wTQzqFk6Jdf73o0bvr7Rh6Kz3mDb6h6Hb1_w-RwYqCwa5d5o3OC9w6rYONtptysYFCPSYl38IS1GpKMekcbg1eGD9pFF5XRvrP9Pq1yqFFT6C3aFe9I</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>AKASAKA, Masayasu</creator><creator>IIDA, Tsutomu</creator><creator>NEMOTO, Takashi</creator><creator>SOGA, Junichi</creator><creator>SATO, Junichi</creator><creator>MAKINO, Kenichiro</creator><creator>FUKANO, Masataka</creator><creator>TAKANASHI, Yoshifumi</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20070601</creationdate><title>Non-wetting crystal growth of Mg2Si by vertical Bridgman method and thermoelectric characteristics</title><author>AKASAKA, Masayasu ; IIDA, Tsutomu ; NEMOTO, Takashi ; SOGA, Junichi ; SATO, Junichi ; MAKINO, Kenichiro ; FUKANO, Masataka ; TAKANASHI, Yoshifumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-6087c44f9b64ead3a8571d62ae2d064bc5142ef55c5fe65df54044f951a1cea13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Growth from melts; zone melting and refining</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Physics</topic><topic>Solid-fluid interfaces</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AKASAKA, Masayasu</creatorcontrib><creatorcontrib>IIDA, Tsutomu</creatorcontrib><creatorcontrib>NEMOTO, Takashi</creatorcontrib><creatorcontrib>SOGA, Junichi</creatorcontrib><creatorcontrib>SATO, Junichi</creatorcontrib><creatorcontrib>MAKINO, Kenichiro</creatorcontrib><creatorcontrib>FUKANO, Masataka</creatorcontrib><creatorcontrib>TAKANASHI, Yoshifumi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AKASAKA, Masayasu</au><au>IIDA, Tsutomu</au><au>NEMOTO, Takashi</au><au>SOGA, Junichi</au><au>SATO, Junichi</au><au>MAKINO, Kenichiro</au><au>FUKANO, Masataka</au><au>TAKANASHI, Yoshifumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-wetting crystal growth of Mg2Si by vertical Bridgman method and thermoelectric characteristics</atitle><jtitle>Journal of crystal growth</jtitle><date>2007-06-01</date><risdate>2007</risdate><volume>304</volume><issue>1</issue><spage>196</spage><epage>201</epage><pages>196-201</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>Magnesium siliside (Mg2Si) crystals have been grown using the vertical Bridgman method in a non-wetting growth environment, achieved by the use of an anti-adhesion coating on the crucible wall. The minimized adhesion of highly reactive molten magnesium (Mg), silicon (Si) and Mg2Si permitted easy removal of the grown ingot from the crucible, and the external shape of the grown ingot followed the shape of inner wall of the crucible. The grown crystals were a single phase of polycrystalline Mg2Si. X-ray analysis, such as Laue back-reflection and Lang transmission topographs revealed that grains obtained were single crystal in nature. Process induced contaminants were investigated by using grow discharge mass spectrometry (GDMS). The grown crystals exhibited n-type conductivity, which could result from the residual impurities in the Mg source material used and unintentional impurity incorporation during growth. Since Mg2Si is a material candidate for thermal-to-electric energy-conversion, the thermoelectric properties such as Seebeck coefficient, S, electrical conductivity, sigma, and thermal conductivity, kappa, were measured as a function of temperature up to 873K. Die-casting process induced characteristics of such thermoelectric properties are discussed. The maximum dimensionless figure-of-merit was estimated to be 0.17 at 656K.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.jcrysgro.2006.10.270</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2007-06, Vol.304 (1), p.196-201
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_29901084
source Elsevier ScienceDirect Journals
subjects Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Growth from melts
zone melting and refining
Materials science
Methods of crystal growth
physics of crystal growth
Physics
Solid-fluid interfaces
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Theory and models of crystal growth
physics of crystal growth, crystal morphology and orientation
Wetting
title Non-wetting crystal growth of Mg2Si by vertical Bridgman method and thermoelectric characteristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A00%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-wetting%20crystal%20growth%20of%20Mg2Si%20by%20vertical%20Bridgman%20method%20and%20thermoelectric%20characteristics&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=AKASAKA,%20Masayasu&rft.date=2007-06-01&rft.volume=304&rft.issue=1&rft.spage=196&rft.epage=201&rft.pages=196-201&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2006.10.270&rft_dat=%3Cproquest_cross%3E29901084%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29901084&rft_id=info:pmid/&rfr_iscdi=true