Roughness of tensile crack fronts in heterogenous materials
The dynamics of planar crack fronts in heterogeneous media is studied using a recently proposed stochastic equation of motion that takes into account nonlinear effects. The analysis is carried for a moving front in the quasi-static regime using the Self Consistent Expansion. A continuous dynamical p...
Gespeichert in:
Veröffentlicht in: | Europhysics letters 2006-11, Vol.76 (3), p.450-456 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 456 |
---|---|
container_issue | 3 |
container_start_page | 450 |
container_title | Europhysics letters |
container_volume | 76 |
creator | Katzav, E Adda-Bedia, M |
description | The dynamics of planar crack fronts in heterogeneous media is studied using a recently proposed stochastic equation of motion that takes into account nonlinear effects. The analysis is carried for a moving front in the quasi-static regime using the Self Consistent Expansion. A continuous dynamical phase transition between a flat phase and a dynamically rough phase, with a roughness exponent $\zeta=1/2$, is found. The rough phase becomes possible due to the destabilization of the linear modes by the nonlinear terms. Taking into account the irreversibility of the crack propagation, we infer that the roughness exponent found in experiments might become history dependent, and so our result gives a lower bound for ζ. |
doi_str_mv | 10.1209/epl/i2006-10273-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29900507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29900507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-75227b52ae8f5ae38bc8d6c2c5ba862e8043773333d3eb99025cb34c48ada0d73</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG89CYLRfDRNiidZXBUFcVH0NqTpdK1225p0Qf-92V3xIs5lGHjeYeYh5JCzUy5YfoZ9c1YLxjLKmdCS6i0y4sJkNDUq3SYjJnJFFdNql-yF8MYY54ZnI3I-65bz1xZDSLoqGbANdYOJ89a9J5Xv2iEkdZu84oC-m2PbLUOysHGobRP2yU4VGx789DF5ml4-Tq7p3f3VzeTijrpUmIFqJYQulLBoKmVRmsKZMnPCqcKaTKBhqdRaxiolFnnOhHKFTF1qbGlZqeWYHG329r77WGIYYFEHh01jW4wHgYgZFn-LIN-AzncheKyg9_XC-i_gDFaaIGqCtSZYa4JVhm4ydRjw8zdg_TtkWmoFhj3D7XSW64eXW5hE_viH7_pfemUXVnZBZyAhVQz6sorsyV_2_1O-ASaKhdc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29900507</pqid></control><display><type>article</type><title>Roughness of tensile crack fronts in heterogenous materials</title><source>IOP Publishing Journals</source><creator>Katzav, E ; Adda-Bedia, M</creator><creatorcontrib>Katzav, E ; Adda-Bedia, M</creatorcontrib><description>The dynamics of planar crack fronts in heterogeneous media is studied using a recently proposed stochastic equation of motion that takes into account nonlinear effects. The analysis is carried for a moving front in the quasi-static regime using the Self Consistent Expansion. A continuous dynamical phase transition between a flat phase and a dynamically rough phase, with a roughness exponent $\zeta=1/2$, is found. The rough phase becomes possible due to the destabilization of the linear modes by the nonlinear terms. Taking into account the irreversibility of the crack propagation, we infer that the roughness exponent found in experiments might become history dependent, and so our result gives a lower bound for ζ.</description><identifier>ISSN: 0295-5075</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/epl/i2006-10273-7</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>05.10.Gg ; 62.20.Mk ; 64.60.Ht</subject><ispartof>Europhysics letters, 2006-11, Vol.76 (3), p.450-456</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-75227b52ae8f5ae38bc8d6c2c5ba862e8043773333d3eb99025cb34c48ada0d73</citedby><cites>FETCH-LOGICAL-c428t-75227b52ae8f5ae38bc8d6c2c5ba862e8043773333d3eb99025cb34c48ada0d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1209/epl/i2006-10273-7/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53885</link.rule.ids></links><search><creatorcontrib>Katzav, E</creatorcontrib><creatorcontrib>Adda-Bedia, M</creatorcontrib><title>Roughness of tensile crack fronts in heterogenous materials</title><title>Europhysics letters</title><description>The dynamics of planar crack fronts in heterogeneous media is studied using a recently proposed stochastic equation of motion that takes into account nonlinear effects. The analysis is carried for a moving front in the quasi-static regime using the Self Consistent Expansion. A continuous dynamical phase transition between a flat phase and a dynamically rough phase, with a roughness exponent $\zeta=1/2$, is found. The rough phase becomes possible due to the destabilization of the linear modes by the nonlinear terms. Taking into account the irreversibility of the crack propagation, we infer that the roughness exponent found in experiments might become history dependent, and so our result gives a lower bound for ζ.</description><subject>05.10.Gg</subject><subject>62.20.Mk</subject><subject>64.60.Ht</subject><issn>0295-5075</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG89CYLRfDRNiidZXBUFcVH0NqTpdK1225p0Qf-92V3xIs5lGHjeYeYh5JCzUy5YfoZ9c1YLxjLKmdCS6i0y4sJkNDUq3SYjJnJFFdNql-yF8MYY54ZnI3I-65bz1xZDSLoqGbANdYOJ89a9J5Xv2iEkdZu84oC-m2PbLUOysHGobRP2yU4VGx789DF5ml4-Tq7p3f3VzeTijrpUmIFqJYQulLBoKmVRmsKZMnPCqcKaTKBhqdRaxiolFnnOhHKFTF1qbGlZqeWYHG329r77WGIYYFEHh01jW4wHgYgZFn-LIN-AzncheKyg9_XC-i_gDFaaIGqCtSZYa4JVhm4ydRjw8zdg_TtkWmoFhj3D7XSW64eXW5hE_viH7_pfemUXVnZBZyAhVQz6sorsyV_2_1O-ASaKhdc</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Katzav, E</creator><creator>Adda-Bedia, M</creator><general>IOP Publishing</general><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20061101</creationdate><title>Roughness of tensile crack fronts in heterogenous materials</title><author>Katzav, E ; Adda-Bedia, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-75227b52ae8f5ae38bc8d6c2c5ba862e8043773333d3eb99025cb34c48ada0d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>05.10.Gg</topic><topic>62.20.Mk</topic><topic>64.60.Ht</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katzav, E</creatorcontrib><creatorcontrib>Adda-Bedia, M</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katzav, E</au><au>Adda-Bedia, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Roughness of tensile crack fronts in heterogenous materials</atitle><jtitle>Europhysics letters</jtitle><date>2006-11-01</date><risdate>2006</risdate><volume>76</volume><issue>3</issue><spage>450</spage><epage>456</epage><pages>450-456</pages><issn>0295-5075</issn><eissn>1286-4854</eissn><abstract>The dynamics of planar crack fronts in heterogeneous media is studied using a recently proposed stochastic equation of motion that takes into account nonlinear effects. The analysis is carried for a moving front in the quasi-static regime using the Self Consistent Expansion. A continuous dynamical phase transition between a flat phase and a dynamically rough phase, with a roughness exponent $\zeta=1/2$, is found. The rough phase becomes possible due to the destabilization of the linear modes by the nonlinear terms. Taking into account the irreversibility of the crack propagation, we infer that the roughness exponent found in experiments might become history dependent, and so our result gives a lower bound for ζ.</abstract><pub>IOP Publishing</pub><doi>10.1209/epl/i2006-10273-7</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0295-5075 |
ispartof | Europhysics letters, 2006-11, Vol.76 (3), p.450-456 |
issn | 0295-5075 1286-4854 |
language | eng |
recordid | cdi_proquest_miscellaneous_29900507 |
source | IOP Publishing Journals |
subjects | 05.10.Gg 62.20.Mk 64.60.Ht |
title | Roughness of tensile crack fronts in heterogenous materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A24%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Roughness%20of%20tensile%20crack%20fronts%20in%20heterogenous%20materials&rft.jtitle=Europhysics%20letters&rft.au=Katzav,%20E&rft.date=2006-11-01&rft.volume=76&rft.issue=3&rft.spage=450&rft.epage=456&rft.pages=450-456&rft.issn=0295-5075&rft.eissn=1286-4854&rft_id=info:doi/10.1209/epl/i2006-10273-7&rft_dat=%3Cproquest_cross%3E29900507%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29900507&rft_id=info:pmid/&rfr_iscdi=true |