Roughness of tensile crack fronts in heterogenous materials

The dynamics of planar crack fronts in heterogeneous media is studied using a recently proposed stochastic equation of motion that takes into account nonlinear effects. The analysis is carried for a moving front in the quasi-static regime using the Self Consistent Expansion. A continuous dynamical p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2006-11, Vol.76 (3), p.450-456
Hauptverfasser: Katzav, E, Adda-Bedia, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 456
container_issue 3
container_start_page 450
container_title Europhysics letters
container_volume 76
creator Katzav, E
Adda-Bedia, M
description The dynamics of planar crack fronts in heterogeneous media is studied using a recently proposed stochastic equation of motion that takes into account nonlinear effects. The analysis is carried for a moving front in the quasi-static regime using the Self Consistent Expansion. A continuous dynamical phase transition between a flat phase and a dynamically rough phase, with a roughness exponent $\zeta=1/2$, is found. The rough phase becomes possible due to the destabilization of the linear modes by the nonlinear terms. Taking into account the irreversibility of the crack propagation, we infer that the roughness exponent found in experiments might become history dependent, and so our result gives a lower bound for ζ.
doi_str_mv 10.1209/epl/i2006-10273-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29900507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29900507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-75227b52ae8f5ae38bc8d6c2c5ba862e8043773333d3eb99025cb34c48ada0d73</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG89CYLRfDRNiidZXBUFcVH0NqTpdK1225p0Qf-92V3xIs5lGHjeYeYh5JCzUy5YfoZ9c1YLxjLKmdCS6i0y4sJkNDUq3SYjJnJFFdNql-yF8MYY54ZnI3I-65bz1xZDSLoqGbANdYOJ89a9J5Xv2iEkdZu84oC-m2PbLUOysHGobRP2yU4VGx789DF5ml4-Tq7p3f3VzeTijrpUmIFqJYQulLBoKmVRmsKZMnPCqcKaTKBhqdRaxiolFnnOhHKFTF1qbGlZqeWYHG329r77WGIYYFEHh01jW4wHgYgZFn-LIN-AzncheKyg9_XC-i_gDFaaIGqCtSZYa4JVhm4ydRjw8zdg_TtkWmoFhj3D7XSW64eXW5hE_viH7_pfemUXVnZBZyAhVQz6sorsyV_2_1O-ASaKhdc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29900507</pqid></control><display><type>article</type><title>Roughness of tensile crack fronts in heterogenous materials</title><source>IOP Publishing Journals</source><creator>Katzav, E ; Adda-Bedia, M</creator><creatorcontrib>Katzav, E ; Adda-Bedia, M</creatorcontrib><description>The dynamics of planar crack fronts in heterogeneous media is studied using a recently proposed stochastic equation of motion that takes into account nonlinear effects. The analysis is carried for a moving front in the quasi-static regime using the Self Consistent Expansion. A continuous dynamical phase transition between a flat phase and a dynamically rough phase, with a roughness exponent $\zeta=1/2$, is found. The rough phase becomes possible due to the destabilization of the linear modes by the nonlinear terms. Taking into account the irreversibility of the crack propagation, we infer that the roughness exponent found in experiments might become history dependent, and so our result gives a lower bound for ζ.</description><identifier>ISSN: 0295-5075</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/epl/i2006-10273-7</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>05.10.Gg ; 62.20.Mk ; 64.60.Ht</subject><ispartof>Europhysics letters, 2006-11, Vol.76 (3), p.450-456</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-75227b52ae8f5ae38bc8d6c2c5ba862e8043773333d3eb99025cb34c48ada0d73</citedby><cites>FETCH-LOGICAL-c428t-75227b52ae8f5ae38bc8d6c2c5ba862e8043773333d3eb99025cb34c48ada0d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1209/epl/i2006-10273-7/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53885</link.rule.ids></links><search><creatorcontrib>Katzav, E</creatorcontrib><creatorcontrib>Adda-Bedia, M</creatorcontrib><title>Roughness of tensile crack fronts in heterogenous materials</title><title>Europhysics letters</title><description>The dynamics of planar crack fronts in heterogeneous media is studied using a recently proposed stochastic equation of motion that takes into account nonlinear effects. The analysis is carried for a moving front in the quasi-static regime using the Self Consistent Expansion. A continuous dynamical phase transition between a flat phase and a dynamically rough phase, with a roughness exponent $\zeta=1/2$, is found. The rough phase becomes possible due to the destabilization of the linear modes by the nonlinear terms. Taking into account the irreversibility of the crack propagation, we infer that the roughness exponent found in experiments might become history dependent, and so our result gives a lower bound for ζ.</description><subject>05.10.Gg</subject><subject>62.20.Mk</subject><subject>64.60.Ht</subject><issn>0295-5075</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG89CYLRfDRNiidZXBUFcVH0NqTpdK1225p0Qf-92V3xIs5lGHjeYeYh5JCzUy5YfoZ9c1YLxjLKmdCS6i0y4sJkNDUq3SYjJnJFFdNql-yF8MYY54ZnI3I-65bz1xZDSLoqGbANdYOJ89a9J5Xv2iEkdZu84oC-m2PbLUOysHGobRP2yU4VGx789DF5ml4-Tq7p3f3VzeTijrpUmIFqJYQulLBoKmVRmsKZMnPCqcKaTKBhqdRaxiolFnnOhHKFTF1qbGlZqeWYHG329r77WGIYYFEHh01jW4wHgYgZFn-LIN-AzncheKyg9_XC-i_gDFaaIGqCtSZYa4JVhm4ydRjw8zdg_TtkWmoFhj3D7XSW64eXW5hE_viH7_pfemUXVnZBZyAhVQz6sorsyV_2_1O-ASaKhdc</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Katzav, E</creator><creator>Adda-Bedia, M</creator><general>IOP Publishing</general><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20061101</creationdate><title>Roughness of tensile crack fronts in heterogenous materials</title><author>Katzav, E ; Adda-Bedia, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-75227b52ae8f5ae38bc8d6c2c5ba862e8043773333d3eb99025cb34c48ada0d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>05.10.Gg</topic><topic>62.20.Mk</topic><topic>64.60.Ht</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katzav, E</creatorcontrib><creatorcontrib>Adda-Bedia, M</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katzav, E</au><au>Adda-Bedia, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Roughness of tensile crack fronts in heterogenous materials</atitle><jtitle>Europhysics letters</jtitle><date>2006-11-01</date><risdate>2006</risdate><volume>76</volume><issue>3</issue><spage>450</spage><epage>456</epage><pages>450-456</pages><issn>0295-5075</issn><eissn>1286-4854</eissn><abstract>The dynamics of planar crack fronts in heterogeneous media is studied using a recently proposed stochastic equation of motion that takes into account nonlinear effects. The analysis is carried for a moving front in the quasi-static regime using the Self Consistent Expansion. A continuous dynamical phase transition between a flat phase and a dynamically rough phase, with a roughness exponent $\zeta=1/2$, is found. The rough phase becomes possible due to the destabilization of the linear modes by the nonlinear terms. Taking into account the irreversibility of the crack propagation, we infer that the roughness exponent found in experiments might become history dependent, and so our result gives a lower bound for ζ.</abstract><pub>IOP Publishing</pub><doi>10.1209/epl/i2006-10273-7</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0295-5075
ispartof Europhysics letters, 2006-11, Vol.76 (3), p.450-456
issn 0295-5075
1286-4854
language eng
recordid cdi_proquest_miscellaneous_29900507
source IOP Publishing Journals
subjects 05.10.Gg
62.20.Mk
64.60.Ht
title Roughness of tensile crack fronts in heterogenous materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A24%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Roughness%20of%20tensile%20crack%20fronts%20in%20heterogenous%20materials&rft.jtitle=Europhysics%20letters&rft.au=Katzav,%20E&rft.date=2006-11-01&rft.volume=76&rft.issue=3&rft.spage=450&rft.epage=456&rft.pages=450-456&rft.issn=0295-5075&rft.eissn=1286-4854&rft_id=info:doi/10.1209/epl/i2006-10273-7&rft_dat=%3Cproquest_cross%3E29900507%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29900507&rft_id=info:pmid/&rfr_iscdi=true