Structure and diffusion simulation of liquid Al2O3

Structure and diffusion of liquid Al2O3 have been investigated by molecular dynamics (MD) method. Simulations were done in the basic cube under periodic boundary conditions containing 3000 ions with the BKS pair potentials. Structure of liquid models agrees reasonably with experiment. The microstruc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. B, Condensed matter Condensed matter, 2004-10, Vol.352 (1-4), p.342-352
Hauptverfasser: Hoang, Vo Van, Kun Oh, Suhk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 352
container_issue 1-4
container_start_page 342
container_title Physica. B, Condensed matter
container_volume 352
creator Hoang, Vo Van
Kun Oh, Suhk
description Structure and diffusion of liquid Al2O3 have been investigated by molecular dynamics (MD) method. Simulations were done in the basic cube under periodic boundary conditions containing 3000 ions with the BKS pair potentials. Structure of liquid models agrees reasonably with experiment. The microstructure of systems has been analyzed through partial radial distribution functions (PRDFs), coordination number distributions, bond-angle distributions and interatomic distances. Temperature dependence of these distributions was obtained. Calculations show that in the liquid Al2O3 model with real density at 2.80g/cm3 there is a short-range order dominated by distorted AlO4 tetrahedron, in agreement with Landron's experiment. Self-diffusion constants have been calculated. The temperature dependence of diffusion constants D in liquid Al2O3 shows an Arrhenius law with activation energy which is close to experimental one for liquid SiO2 and close to the calculated data for diffusion in liquid aluminum silicate. With increasing temperature we find that this dependence shows a crossover to one which can be described well by a power law, D∝(T-Tc)γ. The critical temperature Tc is about 3500K and the exponent γ is close to 0.50. We also present the effects of MD run time on the structure of models. The phase transition temperature Tg for the Al2O3 system is anywhere around 2100K.
doi_str_mv 10.1016/j.physb.2004.08.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29900391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452604008713</els_id><sourcerecordid>29309334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-fa4e4e902f6ea79d5a7df2bf8a8a303dbf203411150a33f86e0c8780b756bb43</originalsourceid><addsrcrecordid>eNqNkMtqwzAQRUVpoenjC7rxpt3ZHWn8kBZdhNAXBLJo9kLWgyo4diLZhfx97SbQXelsZhbn3oFDyB2FjAItHzfZ7vMQ64wB5BnwDCg9IzPKK0wZxeKczEAwmuYFKy_JVYwbGIdWdEbYRx8G3Q_BJqo1ifHODdF3bRL9dmhUP52dSxq_H7xJ5g1b4Q25cKqJ9va0r8n65Xm9eEuXq9f3xXyZahTYp07lNrcCmCutqoQpVGUcqx1XXCGgqR0DzCmlBShEx0sLmlcc6qoo6zrHa_JwrN2Fbj_Y2Mutj9o2jWptN0TJhABAQf8BIgjEqRGPoA5djME6uQt-q8JBUpCTR7mRPx7l5FECl6PHMXV_qldRq8YF1Woff6Ml5VxgOXJPR86OTr68DTJqb1ttjQ9W99J0_s8_3_4eiJY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29309334</pqid></control><display><type>article</type><title>Structure and diffusion simulation of liquid Al2O3</title><source>Elsevier ScienceDirect Journals</source><creator>Hoang, Vo Van ; Kun Oh, Suhk</creator><creatorcontrib>Hoang, Vo Van ; Kun Oh, Suhk</creatorcontrib><description>Structure and diffusion of liquid Al2O3 have been investigated by molecular dynamics (MD) method. Simulations were done in the basic cube under periodic boundary conditions containing 3000 ions with the BKS pair potentials. Structure of liquid models agrees reasonably with experiment. The microstructure of systems has been analyzed through partial radial distribution functions (PRDFs), coordination number distributions, bond-angle distributions and interatomic distances. Temperature dependence of these distributions was obtained. Calculations show that in the liquid Al2O3 model with real density at 2.80g/cm3 there is a short-range order dominated by distorted AlO4 tetrahedron, in agreement with Landron's experiment. Self-diffusion constants have been calculated. The temperature dependence of diffusion constants D in liquid Al2O3 shows an Arrhenius law with activation energy which is close to experimental one for liquid SiO2 and close to the calculated data for diffusion in liquid aluminum silicate. With increasing temperature we find that this dependence shows a crossover to one which can be described well by a power law, D∝(T-Tc)γ. The critical temperature Tc is about 3500K and the exponent γ is close to 0.50. We also present the effects of MD run time on the structure of models. The phase transition temperature Tg for the Al2O3 system is anywhere around 2100K.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2004.08.011</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computer simulation ; Condensed matter: structure, mechanical and thermal properties ; Diffusion ; Exact sciences and technology ; Liquid oxides ; Physics ; Structure of liquids ; Structure of simple liquids ; Structure of solids and liquids; crystallography</subject><ispartof>Physica. B, Condensed matter, 2004-10, Vol.352 (1-4), p.342-352</ispartof><rights>2004 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-fa4e4e902f6ea79d5a7df2bf8a8a303dbf203411150a33f86e0c8780b756bb43</citedby><cites>FETCH-LOGICAL-c393t-fa4e4e902f6ea79d5a7df2bf8a8a303dbf203411150a33f86e0c8780b756bb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921452604008713$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16188936$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoang, Vo Van</creatorcontrib><creatorcontrib>Kun Oh, Suhk</creatorcontrib><title>Structure and diffusion simulation of liquid Al2O3</title><title>Physica. B, Condensed matter</title><description>Structure and diffusion of liquid Al2O3 have been investigated by molecular dynamics (MD) method. Simulations were done in the basic cube under periodic boundary conditions containing 3000 ions with the BKS pair potentials. Structure of liquid models agrees reasonably with experiment. The microstructure of systems has been analyzed through partial radial distribution functions (PRDFs), coordination number distributions, bond-angle distributions and interatomic distances. Temperature dependence of these distributions was obtained. Calculations show that in the liquid Al2O3 model with real density at 2.80g/cm3 there is a short-range order dominated by distorted AlO4 tetrahedron, in agreement with Landron's experiment. Self-diffusion constants have been calculated. The temperature dependence of diffusion constants D in liquid Al2O3 shows an Arrhenius law with activation energy which is close to experimental one for liquid SiO2 and close to the calculated data for diffusion in liquid aluminum silicate. With increasing temperature we find that this dependence shows a crossover to one which can be described well by a power law, D∝(T-Tc)γ. The critical temperature Tc is about 3500K and the exponent γ is close to 0.50. We also present the effects of MD run time on the structure of models. The phase transition temperature Tg for the Al2O3 system is anywhere around 2100K.</description><subject>Computer simulation</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Diffusion</subject><subject>Exact sciences and technology</subject><subject>Liquid oxides</subject><subject>Physics</subject><subject>Structure of liquids</subject><subject>Structure of simple liquids</subject><subject>Structure of solids and liquids; crystallography</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkMtqwzAQRUVpoenjC7rxpt3ZHWn8kBZdhNAXBLJo9kLWgyo4diLZhfx97SbQXelsZhbn3oFDyB2FjAItHzfZ7vMQ64wB5BnwDCg9IzPKK0wZxeKczEAwmuYFKy_JVYwbGIdWdEbYRx8G3Q_BJqo1ifHODdF3bRL9dmhUP52dSxq_H7xJ5g1b4Q25cKqJ9va0r8n65Xm9eEuXq9f3xXyZahTYp07lNrcCmCutqoQpVGUcqx1XXCGgqR0DzCmlBShEx0sLmlcc6qoo6zrHa_JwrN2Fbj_Y2Mutj9o2jWptN0TJhABAQf8BIgjEqRGPoA5djME6uQt-q8JBUpCTR7mRPx7l5FECl6PHMXV_qldRq8YF1Woff6Ml5VxgOXJPR86OTr68DTJqb1ttjQ9W99J0_s8_3_4eiJY</recordid><startdate>20041030</startdate><enddate>20041030</enddate><creator>Hoang, Vo Van</creator><creator>Kun Oh, Suhk</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>8BQ</scope></search><sort><creationdate>20041030</creationdate><title>Structure and diffusion simulation of liquid Al2O3</title><author>Hoang, Vo Van ; Kun Oh, Suhk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-fa4e4e902f6ea79d5a7df2bf8a8a303dbf203411150a33f86e0c8780b756bb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Computer simulation</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Diffusion</topic><topic>Exact sciences and technology</topic><topic>Liquid oxides</topic><topic>Physics</topic><topic>Structure of liquids</topic><topic>Structure of simple liquids</topic><topic>Structure of solids and liquids; crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoang, Vo Van</creatorcontrib><creatorcontrib>Kun Oh, Suhk</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>METADEX</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoang, Vo Van</au><au>Kun Oh, Suhk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and diffusion simulation of liquid Al2O3</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2004-10-30</date><risdate>2004</risdate><volume>352</volume><issue>1-4</issue><spage>342</spage><epage>352</epage><pages>342-352</pages><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>Structure and diffusion of liquid Al2O3 have been investigated by molecular dynamics (MD) method. Simulations were done in the basic cube under periodic boundary conditions containing 3000 ions with the BKS pair potentials. Structure of liquid models agrees reasonably with experiment. The microstructure of systems has been analyzed through partial radial distribution functions (PRDFs), coordination number distributions, bond-angle distributions and interatomic distances. Temperature dependence of these distributions was obtained. Calculations show that in the liquid Al2O3 model with real density at 2.80g/cm3 there is a short-range order dominated by distorted AlO4 tetrahedron, in agreement with Landron's experiment. Self-diffusion constants have been calculated. The temperature dependence of diffusion constants D in liquid Al2O3 shows an Arrhenius law with activation energy which is close to experimental one for liquid SiO2 and close to the calculated data for diffusion in liquid aluminum silicate. With increasing temperature we find that this dependence shows a crossover to one which can be described well by a power law, D∝(T-Tc)γ. The critical temperature Tc is about 3500K and the exponent γ is close to 0.50. We also present the effects of MD run time on the structure of models. The phase transition temperature Tg for the Al2O3 system is anywhere around 2100K.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2004.08.011</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-4526
ispartof Physica. B, Condensed matter, 2004-10, Vol.352 (1-4), p.342-352
issn 0921-4526
1873-2135
language eng
recordid cdi_proquest_miscellaneous_29900391
source Elsevier ScienceDirect Journals
subjects Computer simulation
Condensed matter: structure, mechanical and thermal properties
Diffusion
Exact sciences and technology
Liquid oxides
Physics
Structure of liquids
Structure of simple liquids
Structure of solids and liquids
crystallography
title Structure and diffusion simulation of liquid Al2O3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20diffusion%20simulation%20of%20liquid%20Al2O3&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Hoang,%20Vo%20Van&rft.date=2004-10-30&rft.volume=352&rft.issue=1-4&rft.spage=342&rft.epage=352&rft.pages=342-352&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2004.08.011&rft_dat=%3Cproquest_cross%3E29309334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29309334&rft_id=info:pmid/&rft_els_id=S0921452604008713&rfr_iscdi=true