Nanometer copper–tin alloy anode material for lithium-ion batteries

Nanometer copper–tin alloy anode materials with amorphous structure were prepared by a reverse microemulsion technique for lithium-ion batteries. It was found that the electrochemical performance of alloy was influenced by its particle size, which was controlled by appropriate surfactant content. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2007-02, Vol.52 (7), p.2447-2452
Hauptverfasser: Ren, Jianguo, He, Xiangming, Wang, Li, Pu, Weihua, Jiang, Changyin, Wan, Chunrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2452
container_issue 7
container_start_page 2447
container_title Electrochimica acta
container_volume 52
creator Ren, Jianguo
He, Xiangming
Wang, Li
Pu, Weihua
Jiang, Changyin
Wan, Chunrong
description Nanometer copper–tin alloy anode materials with amorphous structure were prepared by a reverse microemulsion technique for lithium-ion batteries. It was found that the electrochemical performance of alloy was influenced by its particle size, which was controlled by appropriate surfactant content. The nanometer copper–tin alloy with particle size of 50–60 nm presented the best performance, showing a reversible specific capacity of 300 mA h/g over the full voltage range 0.0–1.2 V and capacity retention of 93.3% at 50 cycles. A great irreversible capacity was caused by the formation of a SEI layer on the surface of nanometer alloy. The contact resistance between nanometer particles resulted in the poor electric conductivity and the match of particle size and conductive agent content had a great impact on the electrochemical performance of the nanometer copper–tin alloy anode.
doi_str_mv 10.1016/j.electacta.2006.08.055
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29898091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468606009339</els_id><sourcerecordid>29898091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-c9348918b5d087fbc4614f18dae7f42dca4342c32c842d1a355c12aef34d13643</originalsourceid><addsrcrecordid>eNqFUM1KAzEQDqJgrT6De9Hbrskmm80eS6k_IHrRc5hmZzElu6nJVujNd_ANfRJTWvQoDAzD98d8hFwyWjDK5M2qQIdmhDRFSaksqCpoVR2RCVM1z7mqmmMyoZTxXEglT8lZjCtKaS1rOiGLJxh8jyOGzPj1GsP359dohwyc89ssYS1mPSTYgss6HzJnxze76XPrh2wJ4w7BeE5OOnARLw57Sl5vFy_z-_zx-e5hPnvMDa_lmJuGC9UwtaxaqupuaYRkomOqBaw7UbYGBBel4aVR6WLAq8qwErDjomVcCj4l13vfdfDvG4yj7m006BwM6DdRl41qFG1YItZ7ogk-xoCdXgfbQ9hqRvWuNr3Sv7XpXW2aKp1qS8qrQwREA64LMBgb_-RKNKVgPPFmex6mfz8sBh2NxcFga0Py1a23_2b9AHgFiKY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29898091</pqid></control><display><type>article</type><title>Nanometer copper–tin alloy anode material for lithium-ion batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Ren, Jianguo ; He, Xiangming ; Wang, Li ; Pu, Weihua ; Jiang, Changyin ; Wan, Chunrong</creator><creatorcontrib>Ren, Jianguo ; He, Xiangming ; Wang, Li ; Pu, Weihua ; Jiang, Changyin ; Wan, Chunrong</creatorcontrib><description>Nanometer copper–tin alloy anode materials with amorphous structure were prepared by a reverse microemulsion technique for lithium-ion batteries. It was found that the electrochemical performance of alloy was influenced by its particle size, which was controlled by appropriate surfactant content. The nanometer copper–tin alloy with particle size of 50–60 nm presented the best performance, showing a reversible specific capacity of 300 mA h/g over the full voltage range 0.0–1.2 V and capacity retention of 93.3% at 50 cycles. A great irreversible capacity was caused by the formation of a SEI layer on the surface of nanometer alloy. The contact resistance between nanometer particles resulted in the poor electric conductivity and the match of particle size and conductive agent content had a great impact on the electrochemical performance of the nanometer copper–tin alloy anode.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2006.08.055</identifier><identifier>CODEN: ELCAAV</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Cu–Sn alloy anode ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Exact sciences and technology ; Lithium-ion batteries ; Microemulsion ; Nanometer materials</subject><ispartof>Electrochimica acta, 2007-02, Vol.52 (7), p.2447-2452</ispartof><rights>2006 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-c9348918b5d087fbc4614f18dae7f42dca4342c32c842d1a355c12aef34d13643</citedby><cites>FETCH-LOGICAL-c376t-c9348918b5d087fbc4614f18dae7f42dca4342c32c842d1a355c12aef34d13643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468606009339$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18492413$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ren, Jianguo</creatorcontrib><creatorcontrib>He, Xiangming</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Pu, Weihua</creatorcontrib><creatorcontrib>Jiang, Changyin</creatorcontrib><creatorcontrib>Wan, Chunrong</creatorcontrib><title>Nanometer copper–tin alloy anode material for lithium-ion batteries</title><title>Electrochimica acta</title><description>Nanometer copper–tin alloy anode materials with amorphous structure were prepared by a reverse microemulsion technique for lithium-ion batteries. It was found that the electrochemical performance of alloy was influenced by its particle size, which was controlled by appropriate surfactant content. The nanometer copper–tin alloy with particle size of 50–60 nm presented the best performance, showing a reversible specific capacity of 300 mA h/g over the full voltage range 0.0–1.2 V and capacity retention of 93.3% at 50 cycles. A great irreversible capacity was caused by the formation of a SEI layer on the surface of nanometer alloy. The contact resistance between nanometer particles resulted in the poor electric conductivity and the match of particle size and conductive agent content had a great impact on the electrochemical performance of the nanometer copper–tin alloy anode.</description><subject>Applied sciences</subject><subject>Cu–Sn alloy anode</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Exact sciences and technology</subject><subject>Lithium-ion batteries</subject><subject>Microemulsion</subject><subject>Nanometer materials</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFUM1KAzEQDqJgrT6De9Hbrskmm80eS6k_IHrRc5hmZzElu6nJVujNd_ANfRJTWvQoDAzD98d8hFwyWjDK5M2qQIdmhDRFSaksqCpoVR2RCVM1z7mqmmMyoZTxXEglT8lZjCtKaS1rOiGLJxh8jyOGzPj1GsP359dohwyc89ssYS1mPSTYgss6HzJnxze76XPrh2wJ4w7BeE5OOnARLw57Sl5vFy_z-_zx-e5hPnvMDa_lmJuGC9UwtaxaqupuaYRkomOqBaw7UbYGBBel4aVR6WLAq8qwErDjomVcCj4l13vfdfDvG4yj7m006BwM6DdRl41qFG1YItZ7ogk-xoCdXgfbQ9hqRvWuNr3Sv7XpXW2aKp1qS8qrQwREA64LMBgb_-RKNKVgPPFmex6mfz8sBh2NxcFga0Py1a23_2b9AHgFiKY</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>Ren, Jianguo</creator><creator>He, Xiangming</creator><creator>Wang, Li</creator><creator>Pu, Weihua</creator><creator>Jiang, Changyin</creator><creator>Wan, Chunrong</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20070201</creationdate><title>Nanometer copper–tin alloy anode material for lithium-ion batteries</title><author>Ren, Jianguo ; He, Xiangming ; Wang, Li ; Pu, Weihua ; Jiang, Changyin ; Wan, Chunrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-c9348918b5d087fbc4614f18dae7f42dca4342c32c842d1a355c12aef34d13643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Cu–Sn alloy anode</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Exact sciences and technology</topic><topic>Lithium-ion batteries</topic><topic>Microemulsion</topic><topic>Nanometer materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Jianguo</creatorcontrib><creatorcontrib>He, Xiangming</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Pu, Weihua</creatorcontrib><creatorcontrib>Jiang, Changyin</creatorcontrib><creatorcontrib>Wan, Chunrong</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Jianguo</au><au>He, Xiangming</au><au>Wang, Li</au><au>Pu, Weihua</au><au>Jiang, Changyin</au><au>Wan, Chunrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanometer copper–tin alloy anode material for lithium-ion batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2007-02-01</date><risdate>2007</risdate><volume>52</volume><issue>7</issue><spage>2447</spage><epage>2452</epage><pages>2447-2452</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><coden>ELCAAV</coden><abstract>Nanometer copper–tin alloy anode materials with amorphous structure were prepared by a reverse microemulsion technique for lithium-ion batteries. It was found that the electrochemical performance of alloy was influenced by its particle size, which was controlled by appropriate surfactant content. The nanometer copper–tin alloy with particle size of 50–60 nm presented the best performance, showing a reversible specific capacity of 300 mA h/g over the full voltage range 0.0–1.2 V and capacity retention of 93.3% at 50 cycles. A great irreversible capacity was caused by the formation of a SEI layer on the surface of nanometer alloy. The contact resistance between nanometer particles resulted in the poor electric conductivity and the match of particle size and conductive agent content had a great impact on the electrochemical performance of the nanometer copper–tin alloy anode.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2006.08.055</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2007-02, Vol.52 (7), p.2447-2452
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_miscellaneous_29898091
source Elsevier ScienceDirect Journals
subjects Applied sciences
Cu–Sn alloy anode
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Exact sciences and technology
Lithium-ion batteries
Microemulsion
Nanometer materials
title Nanometer copper–tin alloy anode material for lithium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A26%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanometer%20copper%E2%80%93tin%20alloy%20anode%20material%20for%20lithium-ion%20batteries&rft.jtitle=Electrochimica%20acta&rft.au=Ren,%20Jianguo&rft.date=2007-02-01&rft.volume=52&rft.issue=7&rft.spage=2447&rft.epage=2452&rft.pages=2447-2452&rft.issn=0013-4686&rft.eissn=1873-3859&rft.coden=ELCAAV&rft_id=info:doi/10.1016/j.electacta.2006.08.055&rft_dat=%3Cproquest_cross%3E29898091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29898091&rft_id=info:pmid/&rft_els_id=S0013468606009339&rfr_iscdi=true