Non-Equilibrium Solute Partitioning and Microstructure Formation in Rapidly Solidified Al-Sm Alloys

A critical issue, central to microstructural selection in highly driven systems, is the role of nonequilibrium solute partitioning and the formation of metastable phases. When local chemical equilibrium breaks down at very high undercoolings, solidification dynamics are influenced by limitations to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2007-03, Vol.539-543, p.2810-2815
Hauptverfasser: Napolitano, Ralph E., Meco, H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2815
container_issue
container_start_page 2810
container_title Materials science forum
container_volume 539-543
creator Napolitano, Ralph E.
Meco, H.
description A critical issue, central to microstructural selection in highly driven systems, is the role of nonequilibrium solute partitioning and the formation of metastable phases. When local chemical equilibrium breaks down at very high undercoolings, solidification dynamics are influenced by limitations to atomic attachment kinetics, decreasing solute diffusivities, changing thermodynamic driving forces, and the energetics of ordering or clustering in the liquid phase. The scope of the current study is to employ free-jet melt spinning along with advanced e-beam, x-ray diffraction techniques to investigate the degree of solute partitioning and metastable phase formation during rapid solidification of Al-Sm alloys with compositions at or near the Al-rich eutectic (15wt.% or 3 at.%). At all melt spinning rates employed (10-40m/s), solidification morphologies consist of the Al (fcc) and All i Sm3 (tetragonal) phases. Certain morphological transitions occur through the thickness of the ribbon, indicating a change in the prevailing cooling conditions as solidification proceeds. In addition, x-ray diffraction analysis indicates that the Sm content in the fcc Al phase is well above that given by local two-phase (fcc+liquid) equilibrium.
doi_str_mv 10.4028/www.scientific.net/MSF.539-543.2810
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29897079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29897079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-2f353bde7bf01b00e9ce5e56c7c6eac6d4965395e6ba6fee527a81761e0fa75d3</originalsourceid><addsrcrecordid>eNqVkMtOwzAQRS0EEuXxD1mxQQl2EtvJsqpaQCoPUVhbjjMBo8RubUdV_x5HRWLNZmYxd-7MPQjdEpyVOK_u9vt95pUGE3SnVWYg3D1tVhkt6pSWRZZXBJ-gGWEsT2tO81M0wzmlccbZObrw_hvjglSEzZB6tiZd7kbd68bpcUg2th8DJK_SBR20Ndp8JtK0yZNWzvrgRhVGB8nKukFO80Sb5E1uddsfpl3dxo-gTeZ9uhli7e3BX6GzTvYern_7JfpYLd8XD-n65f5xMV-nqsBlSPOuoEXTAm86TBqMoVZAgTLFFQOpWFvWLCakwBrJOgCac1kRzgjgTnLaFpfo5ui7dXY3gg9i0F5B30sDdvQir6uaY15H4eIonCJ5B53YOj1IdxAEiwmwiIDFH2ARAYsIWMTzIgIWE-Dosjy6BCeND6C-xLcdnYkR_-XzA7B4kXk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29897079</pqid></control><display><type>article</type><title>Non-Equilibrium Solute Partitioning and Microstructure Formation in Rapidly Solidified Al-Sm Alloys</title><source>Scientific.net Journals</source><creator>Napolitano, Ralph E. ; Meco, H.</creator><creatorcontrib>Napolitano, Ralph E. ; Meco, H.</creatorcontrib><description>A critical issue, central to microstructural selection in highly driven systems, is the role of nonequilibrium solute partitioning and the formation of metastable phases. When local chemical equilibrium breaks down at very high undercoolings, solidification dynamics are influenced by limitations to atomic attachment kinetics, decreasing solute diffusivities, changing thermodynamic driving forces, and the energetics of ordering or clustering in the liquid phase. The scope of the current study is to employ free-jet melt spinning along with advanced e-beam, x-ray diffraction techniques to investigate the degree of solute partitioning and metastable phase formation during rapid solidification of Al-Sm alloys with compositions at or near the Al-rich eutectic (15wt.% or 3 at.%). At all melt spinning rates employed (10-40m/s), solidification morphologies consist of the Al (fcc) and All i Sm3 (tetragonal) phases. Certain morphological transitions occur through the thickness of the ribbon, indicating a change in the prevailing cooling conditions as solidification proceeds. In addition, x-ray diffraction analysis indicates that the Sm content in the fcc Al phase is well above that given by local two-phase (fcc+liquid) equilibrium.</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>EISSN: 1662-9752</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.539-543.2810</identifier><language>eng</language><publisher>Trans Tech Publications Ltd</publisher><ispartof>Materials science forum, 2007-03, Vol.539-543, p.2810-2815</ispartof><rights>2007 Trans Tech Publications Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-2f353bde7bf01b00e9ce5e56c7c6eac6d4965395e6ba6fee527a81761e0fa75d3</citedby><cites>FETCH-LOGICAL-c304t-2f353bde7bf01b00e9ce5e56c7c6eac6d4965395e6ba6fee527a81761e0fa75d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/58?width=600</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Napolitano, Ralph E.</creatorcontrib><creatorcontrib>Meco, H.</creatorcontrib><title>Non-Equilibrium Solute Partitioning and Microstructure Formation in Rapidly Solidified Al-Sm Alloys</title><title>Materials science forum</title><description>A critical issue, central to microstructural selection in highly driven systems, is the role of nonequilibrium solute partitioning and the formation of metastable phases. When local chemical equilibrium breaks down at very high undercoolings, solidification dynamics are influenced by limitations to atomic attachment kinetics, decreasing solute diffusivities, changing thermodynamic driving forces, and the energetics of ordering or clustering in the liquid phase. The scope of the current study is to employ free-jet melt spinning along with advanced e-beam, x-ray diffraction techniques to investigate the degree of solute partitioning and metastable phase formation during rapid solidification of Al-Sm alloys with compositions at or near the Al-rich eutectic (15wt.% or 3 at.%). At all melt spinning rates employed (10-40m/s), solidification morphologies consist of the Al (fcc) and All i Sm3 (tetragonal) phases. Certain morphological transitions occur through the thickness of the ribbon, indicating a change in the prevailing cooling conditions as solidification proceeds. In addition, x-ray diffraction analysis indicates that the Sm content in the fcc Al phase is well above that given by local two-phase (fcc+liquid) equilibrium.</description><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqVkMtOwzAQRS0EEuXxD1mxQQl2EtvJsqpaQCoPUVhbjjMBo8RubUdV_x5HRWLNZmYxd-7MPQjdEpyVOK_u9vt95pUGE3SnVWYg3D1tVhkt6pSWRZZXBJ-gGWEsT2tO81M0wzmlccbZObrw_hvjglSEzZB6tiZd7kbd68bpcUg2th8DJK_SBR20Ndp8JtK0yZNWzvrgRhVGB8nKukFO80Sb5E1uddsfpl3dxo-gTeZ9uhli7e3BX6GzTvYern_7JfpYLd8XD-n65f5xMV-nqsBlSPOuoEXTAm86TBqMoVZAgTLFFQOpWFvWLCakwBrJOgCac1kRzgjgTnLaFpfo5ui7dXY3gg9i0F5B30sDdvQir6uaY15H4eIonCJ5B53YOj1IdxAEiwmwiIDFH2ARAYsIWMTzIgIWE-Dosjy6BCeND6C-xLcdnYkR_-XzA7B4kXk</recordid><startdate>20070315</startdate><enddate>20070315</enddate><creator>Napolitano, Ralph E.</creator><creator>Meco, H.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20070315</creationdate><title>Non-Equilibrium Solute Partitioning and Microstructure Formation in Rapidly Solidified Al-Sm Alloys</title><author>Napolitano, Ralph E. ; Meco, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-2f353bde7bf01b00e9ce5e56c7c6eac6d4965395e6ba6fee527a81761e0fa75d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Napolitano, Ralph E.</creatorcontrib><creatorcontrib>Meco, H.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Napolitano, Ralph E.</au><au>Meco, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Equilibrium Solute Partitioning and Microstructure Formation in Rapidly Solidified Al-Sm Alloys</atitle><jtitle>Materials science forum</jtitle><date>2007-03-15</date><risdate>2007</risdate><volume>539-543</volume><spage>2810</spage><epage>2815</epage><pages>2810-2815</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><abstract>A critical issue, central to microstructural selection in highly driven systems, is the role of nonequilibrium solute partitioning and the formation of metastable phases. When local chemical equilibrium breaks down at very high undercoolings, solidification dynamics are influenced by limitations to atomic attachment kinetics, decreasing solute diffusivities, changing thermodynamic driving forces, and the energetics of ordering or clustering in the liquid phase. The scope of the current study is to employ free-jet melt spinning along with advanced e-beam, x-ray diffraction techniques to investigate the degree of solute partitioning and metastable phase formation during rapid solidification of Al-Sm alloys with compositions at or near the Al-rich eutectic (15wt.% or 3 at.%). At all melt spinning rates employed (10-40m/s), solidification morphologies consist of the Al (fcc) and All i Sm3 (tetragonal) phases. Certain morphological transitions occur through the thickness of the ribbon, indicating a change in the prevailing cooling conditions as solidification proceeds. In addition, x-ray diffraction analysis indicates that the Sm content in the fcc Al phase is well above that given by local two-phase (fcc+liquid) equilibrium.</abstract><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.539-543.2810</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0255-5476
ispartof Materials science forum, 2007-03, Vol.539-543, p.2810-2815
issn 0255-5476
1662-9752
1662-9752
language eng
recordid cdi_proquest_miscellaneous_29897079
source Scientific.net Journals
title Non-Equilibrium Solute Partitioning and Microstructure Formation in Rapidly Solidified Al-Sm Alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Equilibrium%20Solute%20Partitioning%20and%20Microstructure%20Formation%20in%20Rapidly%20Solidified%20Al-Sm%20Alloys&rft.jtitle=Materials%20science%20forum&rft.au=Napolitano,%20Ralph%20E.&rft.date=2007-03-15&rft.volume=539-543&rft.spage=2810&rft.epage=2815&rft.pages=2810-2815&rft.issn=0255-5476&rft.eissn=1662-9752&rft_id=info:doi/10.4028/www.scientific.net/MSF.539-543.2810&rft_dat=%3Cproquest_cross%3E29897079%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29897079&rft_id=info:pmid/&rfr_iscdi=true