Optimal shape of a vertical rotating column

We determine the shape of the lightest rotating column that is stable against buckling, positioned in a constant gravity field, oriented along the column axis. In deriving the optimality conditions, the Pontryagin's principle was used. Optimal cross-sectional area is obtained from the solution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of non-linear mechanics 2007, Vol.42 (1), p.172-179
Hauptverfasser: Jelicic, Z.D., Atanackovic, T.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 179
container_issue 1
container_start_page 172
container_title International journal of non-linear mechanics
container_volume 42
creator Jelicic, Z.D.
Atanackovic, T.M.
description We determine the shape of the lightest rotating column that is stable against buckling, positioned in a constant gravity field, oriented along the column axis. In deriving the optimality conditions, the Pontryagin's principle was used. Optimal cross-sectional area is obtained from the solution of a non-linear boundary value problem. For this problem a variational principle and a first integral are formulated. Also a priori estimates of the cross-sectional area at the lower end are presented. The procedure is illustrated by three concrete examples. The problem treated here may be considered as a step in the dynamic optimization procedure of a heavy rotating column.
doi_str_mv 10.1016/j.ijnonlinmec.2006.10.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29895334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746207000339</els_id><sourcerecordid>29895334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-b6353cc9ac52857a8a413b215778591c2ecef0fa74f8fc4aea87c0ed72c149eb3</originalsourceid><addsrcrecordid>eNqNkEtLxDAUhYMoOD7-Q924kdY8miZdyuALBmaj65C5c6spbVOTzID_3gzjwqWrC-eec-B8hNwwWjHKmvu-cv3kp8FNI0LFKW2yXlFOT8iCaaVL2Qh9ShY0S6WqG35OLmLsac7WVC3I3XpObrRDET_tjIXvClvsMSQHWQs-2eSmjwL8sBunK3LW2SHi9e-9JO9Pj2_Ll3K1fn5dPqxKEJKnctMIKQBaC5Jrqay2NRMbzqRSWrYMOAJ2tLOq7nQHtUWrFVDcKg6sbnEjLsntsXcO_muHMZnRRcBhsBP6XTS81a0Uos7G9miE4GMM2Jk55DHh2zBqDnhMb_7gMQc8h1dmkbPLYxbzkr3DYCI4nAC3LiAks_XuHy0_KF50Kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29895334</pqid></control><display><type>article</type><title>Optimal shape of a vertical rotating column</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jelicic, Z.D. ; Atanackovic, T.M.</creator><creatorcontrib>Jelicic, Z.D. ; Atanackovic, T.M.</creatorcontrib><description>We determine the shape of the lightest rotating column that is stable against buckling, positioned in a constant gravity field, oriented along the column axis. In deriving the optimality conditions, the Pontryagin's principle was used. Optimal cross-sectional area is obtained from the solution of a non-linear boundary value problem. For this problem a variational principle and a first integral are formulated. Also a priori estimates of the cross-sectional area at the lower end are presented. The procedure is illustrated by three concrete examples. The problem treated here may be considered as a step in the dynamic optimization procedure of a heavy rotating column.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/j.ijnonlinmec.2006.10.020</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Constant gravity field ; Optimal shape ; Rotating column</subject><ispartof>International journal of non-linear mechanics, 2007, Vol.42 (1), p.172-179</ispartof><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-b6353cc9ac52857a8a413b215778591c2ecef0fa74f8fc4aea87c0ed72c149eb3</citedby><cites>FETCH-LOGICAL-c352t-b6353cc9ac52857a8a413b215778591c2ecef0fa74f8fc4aea87c0ed72c149eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijnonlinmec.2006.10.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4022,27922,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Jelicic, Z.D.</creatorcontrib><creatorcontrib>Atanackovic, T.M.</creatorcontrib><title>Optimal shape of a vertical rotating column</title><title>International journal of non-linear mechanics</title><description>We determine the shape of the lightest rotating column that is stable against buckling, positioned in a constant gravity field, oriented along the column axis. In deriving the optimality conditions, the Pontryagin's principle was used. Optimal cross-sectional area is obtained from the solution of a non-linear boundary value problem. For this problem a variational principle and a first integral are formulated. Also a priori estimates of the cross-sectional area at the lower end are presented. The procedure is illustrated by three concrete examples. The problem treated here may be considered as a step in the dynamic optimization procedure of a heavy rotating column.</description><subject>Constant gravity field</subject><subject>Optimal shape</subject><subject>Rotating column</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLxDAUhYMoOD7-Q924kdY8miZdyuALBmaj65C5c6spbVOTzID_3gzjwqWrC-eec-B8hNwwWjHKmvu-cv3kp8FNI0LFKW2yXlFOT8iCaaVL2Qh9ShY0S6WqG35OLmLsac7WVC3I3XpObrRDET_tjIXvClvsMSQHWQs-2eSmjwL8sBunK3LW2SHi9e-9JO9Pj2_Ll3K1fn5dPqxKEJKnctMIKQBaC5Jrqay2NRMbzqRSWrYMOAJ2tLOq7nQHtUWrFVDcKg6sbnEjLsntsXcO_muHMZnRRcBhsBP6XTS81a0Uos7G9miE4GMM2Jk55DHh2zBqDnhMb_7gMQc8h1dmkbPLYxbzkr3DYCI4nAC3LiAks_XuHy0_KF50Kw</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Jelicic, Z.D.</creator><creator>Atanackovic, T.M.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2007</creationdate><title>Optimal shape of a vertical rotating column</title><author>Jelicic, Z.D. ; Atanackovic, T.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-b6353cc9ac52857a8a413b215778591c2ecef0fa74f8fc4aea87c0ed72c149eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Constant gravity field</topic><topic>Optimal shape</topic><topic>Rotating column</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jelicic, Z.D.</creatorcontrib><creatorcontrib>Atanackovic, T.M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jelicic, Z.D.</au><au>Atanackovic, T.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal shape of a vertical rotating column</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2007</date><risdate>2007</risdate><volume>42</volume><issue>1</issue><spage>172</spage><epage>179</epage><pages>172-179</pages><issn>0020-7462</issn><eissn>1878-5638</eissn><abstract>We determine the shape of the lightest rotating column that is stable against buckling, positioned in a constant gravity field, oriented along the column axis. In deriving the optimality conditions, the Pontryagin's principle was used. Optimal cross-sectional area is obtained from the solution of a non-linear boundary value problem. For this problem a variational principle and a first integral are formulated. Also a priori estimates of the cross-sectional area at the lower end are presented. The procedure is illustrated by three concrete examples. The problem treated here may be considered as a step in the dynamic optimization procedure of a heavy rotating column.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijnonlinmec.2006.10.020</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7462
ispartof International journal of non-linear mechanics, 2007, Vol.42 (1), p.172-179
issn 0020-7462
1878-5638
language eng
recordid cdi_proquest_miscellaneous_29895334
source ScienceDirect Journals (5 years ago - present)
subjects Constant gravity field
Optimal shape
Rotating column
title Optimal shape of a vertical rotating column
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20shape%20of%20a%20vertical%20rotating%20column&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Jelicic,%20Z.D.&rft.date=2007&rft.volume=42&rft.issue=1&rft.spage=172&rft.epage=179&rft.pages=172-179&rft.issn=0020-7462&rft.eissn=1878-5638&rft_id=info:doi/10.1016/j.ijnonlinmec.2006.10.020&rft_dat=%3Cproquest_cross%3E29895334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29895334&rft_id=info:pmid/&rft_els_id=S0020746207000339&rfr_iscdi=true