On stabilized integration for time-dependent PDEs

An integration method is discussed which has been designed to treat parabolic and hyperbolic terms explicitly and stiff reaction terms implicitly. The method is a special two-step form of the one-step IMEX (implicit–explicit) RKC (Runge–Kutta–Chebyshev) method. The special two-step form is introduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2007-05, Vol.224 (1), p.3-16
Hauptverfasser: Sommeijer, B.P., Verwer, J.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 1
container_start_page 3
container_title Journal of computational physics
container_volume 224
creator Sommeijer, B.P.
Verwer, J.G.
description An integration method is discussed which has been designed to treat parabolic and hyperbolic terms explicitly and stiff reaction terms implicitly. The method is a special two-step form of the one-step IMEX (implicit–explicit) RKC (Runge–Kutta–Chebyshev) method. The special two-step form is introduced with the aim of getting a non-zero imaginary stability boundary which is zero for the one-step method. Having a non-zero imaginary stability boundary allows, for example, the integration of pure advection equations space-discretized with centered schemes, the integration of damped or viscous wave equations, the integration of coupled sound and heat flow equations, etc. For our class of methods it also simplifies the choice of temporal step sizes satisfying the von Neumann stability criterion, by embedding a thin long rectangle inside the stability region. Embedding rectangles or other tractable domains with this purpose is an idea of Wesseling.
doi_str_mv 10.1016/j.jcp.2006.11.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29888742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999106005705</els_id><sourcerecordid>29888742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-4959c9bb5cf4b760986e323c9e5f37df2ca3d821196fff58287b13bf84b5e4c73</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEuXxA9iywJbg6zxsiwmV8pAqlQFmy3GukaPUKbaLBL-eVK3ExnSXc76j-xFyBbQACs1tX_RmUzBKmwKgoFAekRlQSXPGoTkmM0oZ5FJKOCVnMfaUUlFXYkZg5bOYdOsG94Nd5nzCj6CTG31mx5Alt8a8ww36Dn3KXh8W8YKcWD1EvDzcc_L-uHibP-fL1dPL_H6Zm4pCyitZSyPbtja2anlDpWiwZKWRWNuSd5YZXXaCAcjGWlsLJngLZWtF1dZYGV6ek5s9dxPGzy3GpNYuGhwG7XHcRsWkEIJXbArCPmjCGGNAqzbBrXX4VkDVTo7q1SRH7eQoADXJmTrXB7iORg82aG9c_CsKLrjkO_bdPofTp18Og4rGoTfYuYAmqW50_6z8AmVseJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29888742</pqid></control><display><type>article</type><title>On stabilized integration for time-dependent PDEs</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sommeijer, B.P. ; Verwer, J.G.</creator><creatorcontrib>Sommeijer, B.P. ; Verwer, J.G.</creatorcontrib><description>An integration method is discussed which has been designed to treat parabolic and hyperbolic terms explicitly and stiff reaction terms implicitly. The method is a special two-step form of the one-step IMEX (implicit–explicit) RKC (Runge–Kutta–Chebyshev) method. The special two-step form is introduced with the aim of getting a non-zero imaginary stability boundary which is zero for the one-step method. Having a non-zero imaginary stability boundary allows, for example, the integration of pure advection equations space-discretized with centered schemes, the integration of damped or viscous wave equations, the integration of coupled sound and heat flow equations, etc. For our class of methods it also simplifies the choice of temporal step sizes satisfying the von Neumann stability criterion, by embedding a thin long rectangle inside the stability region. Embedding rectangles or other tractable domains with this purpose is an idea of Wesseling.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2006.11.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Computational techniques ; Coupled sound and heat flow ; Damped wave equations ; Exact sciences and technology ; Mathematical methods in physics ; Numerical integration ; Physics ; Reactive flow problems ; Runge–Kutta–Chebyshev methods ; Stabilized explicit integration</subject><ispartof>Journal of computational physics, 2007-05, Vol.224 (1), p.3-16</ispartof><rights>2006 Elsevier Inc.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-4959c9bb5cf4b760986e323c9e5f37df2ca3d821196fff58287b13bf84b5e4c73</citedby><cites>FETCH-LOGICAL-c401t-4959c9bb5cf4b760986e323c9e5f37df2ca3d821196fff58287b13bf84b5e4c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2006.11.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18787972$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sommeijer, B.P.</creatorcontrib><creatorcontrib>Verwer, J.G.</creatorcontrib><title>On stabilized integration for time-dependent PDEs</title><title>Journal of computational physics</title><description>An integration method is discussed which has been designed to treat parabolic and hyperbolic terms explicitly and stiff reaction terms implicitly. The method is a special two-step form of the one-step IMEX (implicit–explicit) RKC (Runge–Kutta–Chebyshev) method. The special two-step form is introduced with the aim of getting a non-zero imaginary stability boundary which is zero for the one-step method. Having a non-zero imaginary stability boundary allows, for example, the integration of pure advection equations space-discretized with centered schemes, the integration of damped or viscous wave equations, the integration of coupled sound and heat flow equations, etc. For our class of methods it also simplifies the choice of temporal step sizes satisfying the von Neumann stability criterion, by embedding a thin long rectangle inside the stability region. Embedding rectangles or other tractable domains with this purpose is an idea of Wesseling.</description><subject>Computational techniques</subject><subject>Coupled sound and heat flow</subject><subject>Damped wave equations</subject><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Numerical integration</subject><subject>Physics</subject><subject>Reactive flow problems</subject><subject>Runge–Kutta–Chebyshev methods</subject><subject>Stabilized explicit integration</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEuXxA9iywJbg6zxsiwmV8pAqlQFmy3GukaPUKbaLBL-eVK3ExnSXc76j-xFyBbQACs1tX_RmUzBKmwKgoFAekRlQSXPGoTkmM0oZ5FJKOCVnMfaUUlFXYkZg5bOYdOsG94Nd5nzCj6CTG31mx5Alt8a8ww36Dn3KXh8W8YKcWD1EvDzcc_L-uHibP-fL1dPL_H6Zm4pCyitZSyPbtja2anlDpWiwZKWRWNuSd5YZXXaCAcjGWlsLJngLZWtF1dZYGV6ek5s9dxPGzy3GpNYuGhwG7XHcRsWkEIJXbArCPmjCGGNAqzbBrXX4VkDVTo7q1SRH7eQoADXJmTrXB7iORg82aG9c_CsKLrjkO_bdPofTp18Og4rGoTfYuYAmqW50_6z8AmVseJI</recordid><startdate>20070520</startdate><enddate>20070520</enddate><creator>Sommeijer, B.P.</creator><creator>Verwer, J.G.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070520</creationdate><title>On stabilized integration for time-dependent PDEs</title><author>Sommeijer, B.P. ; Verwer, J.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-4959c9bb5cf4b760986e323c9e5f37df2ca3d821196fff58287b13bf84b5e4c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computational techniques</topic><topic>Coupled sound and heat flow</topic><topic>Damped wave equations</topic><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Numerical integration</topic><topic>Physics</topic><topic>Reactive flow problems</topic><topic>Runge–Kutta–Chebyshev methods</topic><topic>Stabilized explicit integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sommeijer, B.P.</creatorcontrib><creatorcontrib>Verwer, J.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sommeijer, B.P.</au><au>Verwer, J.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On stabilized integration for time-dependent PDEs</atitle><jtitle>Journal of computational physics</jtitle><date>2007-05-20</date><risdate>2007</risdate><volume>224</volume><issue>1</issue><spage>3</spage><epage>16</epage><pages>3-16</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>An integration method is discussed which has been designed to treat parabolic and hyperbolic terms explicitly and stiff reaction terms implicitly. The method is a special two-step form of the one-step IMEX (implicit–explicit) RKC (Runge–Kutta–Chebyshev) method. The special two-step form is introduced with the aim of getting a non-zero imaginary stability boundary which is zero for the one-step method. Having a non-zero imaginary stability boundary allows, for example, the integration of pure advection equations space-discretized with centered schemes, the integration of damped or viscous wave equations, the integration of coupled sound and heat flow equations, etc. For our class of methods it also simplifies the choice of temporal step sizes satisfying the von Neumann stability criterion, by embedding a thin long rectangle inside the stability region. Embedding rectangles or other tractable domains with this purpose is an idea of Wesseling.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2006.11.013</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2007-05, Vol.224 (1), p.3-16
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_29888742
source Access via ScienceDirect (Elsevier)
subjects Computational techniques
Coupled sound and heat flow
Damped wave equations
Exact sciences and technology
Mathematical methods in physics
Numerical integration
Physics
Reactive flow problems
Runge–Kutta–Chebyshev methods
Stabilized explicit integration
title On stabilized integration for time-dependent PDEs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T17%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20stabilized%20integration%20for%20time-dependent%20PDEs&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Sommeijer,%20B.P.&rft.date=2007-05-20&rft.volume=224&rft.issue=1&rft.spage=3&rft.epage=16&rft.pages=3-16&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2006.11.013&rft_dat=%3Cproquest_cross%3E29888742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29888742&rft_id=info:pmid/&rft_els_id=S0021999106005705&rfr_iscdi=true