Numerical investigation of turbulent natural convection in an inclined square cavity with a hot wavy wall

The turbulent natural convection of air flow in a confined cavity with two differentially heated side walls is investigated numerically up to Rayleigh number of 10 12. The objective of the present work is to study the effect of the inclination angle and the amplitude of the undulation on turbulent h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2007-05, Vol.50 (9), p.1683-1693
Hauptverfasser: Aounallah, M., Addad, Y., Benhamadouche, S., Imine, O., Adjlout, L., Laurence, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1693
container_issue 9
container_start_page 1683
container_title International journal of heat and mass transfer
container_volume 50
creator Aounallah, M.
Addad, Y.
Benhamadouche, S.
Imine, O.
Adjlout, L.
Laurence, D.
description The turbulent natural convection of air flow in a confined cavity with two differentially heated side walls is investigated numerically up to Rayleigh number of 10 12. The objective of the present work is to study the effect of the inclination angle and the amplitude of the undulation on turbulent heat transfer. The low-Reynolds-number k– ε, k– ω, k– ω–SST RANS models and a coarse DNS are used and compared to the experimental benchmark data of Ampofo and Karayiannis [F. Ampofo, T.G. Karayiannis, Experimental benchmark data for turbulent natural convection in an air filled square cavity, Int. J. Heat Mass Transfer 46 (2003) 3551–3572]. The k– ω–SST model is then used for the following test-cases as it gives the closest results to experimental data and coarse DNS for this case. The mean flow quantities and temperature field show good agreement with coarse DNS and measurements, but there are some slight discrepancies in the prediction of the turbulent statistics. Also, the numerical results of the heat flux at the hot wall are over predicted. The strong influence of the undulation of the cavity and its orientation is well shown. The trend of the local heat transfer is wavy with different frequencies for each undulation. The turbulence causes an increase in the convective heat transfer on the wavy wall surface compared to the square cavity for high Rayleigh numbers. A correlation of the mean Nusselt number function of the Rayleigh number is also proposed for the range of Rayleigh numbers of 10 9–10 12.
doi_str_mv 10.1016/j.ijheatmasstransfer.2006.10.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29879800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931006005849</els_id><sourcerecordid>29879800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-bba1e91bf3ace45301de13a2ffdb937e0481da8f9616718ee52cfe17492d79a3</originalsourceid><addsrcrecordid>eNqNkMFO3DAQhq2KSl1o38GXVr1k8STZJL61QtCCEL1wtybOuDurrAO2s4i3r9NF4sCFi8ej-fSP5hPiO6g1KGjOd2vebQnTHmNMAX10FNalUk0erxVsPogVdK0uSuj0iVgpBW2hK1CfxGmMu6VVdbMSfDfvKbDFUbI_UEz8FxNPXk5Opjn080g-SY_5nxE7Zcb-n7OXuLx2ZE-DjI8zBpIWD5ye5ROnrUS5nZJ8wkPucRw_i48Ox0hfXuqZuL-6vL_4Xdz--XV98fO2sLWqUtH3CKShdxVaqjeVgoGgwtK5oddVS6ruYMDO6QaaFjqiTWkdQVvrcmg1Vmfi2zH2IUyPcz7I7DlaGkf0NM3RlDpb6ZTK4I8jaMMUYyBnHgLvMTwbUGZRbHbmrWKzKF6IrDhHfH3ZhTEbdJmxHF9zukY1dVNm7ubIUb77wDklWiZvaeCQdZph4vcv_QcLuKGX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29879800</pqid></control><display><type>article</type><title>Numerical investigation of turbulent natural convection in an inclined square cavity with a hot wavy wall</title><source>Elsevier ScienceDirect Journals</source><creator>Aounallah, M. ; Addad, Y. ; Benhamadouche, S. ; Imine, O. ; Adjlout, L. ; Laurence, D.</creator><creatorcontrib>Aounallah, M. ; Addad, Y. ; Benhamadouche, S. ; Imine, O. ; Adjlout, L. ; Laurence, D.</creatorcontrib><description>The turbulent natural convection of air flow in a confined cavity with two differentially heated side walls is investigated numerically up to Rayleigh number of 10 12. The objective of the present work is to study the effect of the inclination angle and the amplitude of the undulation on turbulent heat transfer. The low-Reynolds-number k– ε, k– ω, k– ω–SST RANS models and a coarse DNS are used and compared to the experimental benchmark data of Ampofo and Karayiannis [F. Ampofo, T.G. Karayiannis, Experimental benchmark data for turbulent natural convection in an air filled square cavity, Int. J. Heat Mass Transfer 46 (2003) 3551–3572]. The k– ω–SST model is then used for the following test-cases as it gives the closest results to experimental data and coarse DNS for this case. The mean flow quantities and temperature field show good agreement with coarse DNS and measurements, but there are some slight discrepancies in the prediction of the turbulent statistics. Also, the numerical results of the heat flux at the hot wall are over predicted. The strong influence of the undulation of the cavity and its orientation is well shown. The trend of the local heat transfer is wavy with different frequencies for each undulation. The turbulence causes an increase in the convective heat transfer on the wavy wall surface compared to the square cavity for high Rayleigh numbers. A correlation of the mean Nusselt number function of the Rayleigh number is also proposed for the range of Rayleigh numbers of 10 9–10 12.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2006.10.015</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Coarse DNS ; Convection and heat transfer ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Heat transfer ; k– ω–SST model ; Natural convection ; Physics ; Turbulent flows, convection, and heat transfer ; Undulation</subject><ispartof>International journal of heat and mass transfer, 2007-05, Vol.50 (9), p.1683-1693</ispartof><rights>2006 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-bba1e91bf3ace45301de13a2ffdb937e0481da8f9616718ee52cfe17492d79a3</citedby><cites>FETCH-LOGICAL-c403t-bba1e91bf3ace45301de13a2ffdb937e0481da8f9616718ee52cfe17492d79a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.10.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18606462$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Aounallah, M.</creatorcontrib><creatorcontrib>Addad, Y.</creatorcontrib><creatorcontrib>Benhamadouche, S.</creatorcontrib><creatorcontrib>Imine, O.</creatorcontrib><creatorcontrib>Adjlout, L.</creatorcontrib><creatorcontrib>Laurence, D.</creatorcontrib><title>Numerical investigation of turbulent natural convection in an inclined square cavity with a hot wavy wall</title><title>International journal of heat and mass transfer</title><description>The turbulent natural convection of air flow in a confined cavity with two differentially heated side walls is investigated numerically up to Rayleigh number of 10 12. The objective of the present work is to study the effect of the inclination angle and the amplitude of the undulation on turbulent heat transfer. The low-Reynolds-number k– ε, k– ω, k– ω–SST RANS models and a coarse DNS are used and compared to the experimental benchmark data of Ampofo and Karayiannis [F. Ampofo, T.G. Karayiannis, Experimental benchmark data for turbulent natural convection in an air filled square cavity, Int. J. Heat Mass Transfer 46 (2003) 3551–3572]. The k– ω–SST model is then used for the following test-cases as it gives the closest results to experimental data and coarse DNS for this case. The mean flow quantities and temperature field show good agreement with coarse DNS and measurements, but there are some slight discrepancies in the prediction of the turbulent statistics. Also, the numerical results of the heat flux at the hot wall are over predicted. The strong influence of the undulation of the cavity and its orientation is well shown. The trend of the local heat transfer is wavy with different frequencies for each undulation. The turbulence causes an increase in the convective heat transfer on the wavy wall surface compared to the square cavity for high Rayleigh numbers. A correlation of the mean Nusselt number function of the Rayleigh number is also proposed for the range of Rayleigh numbers of 10 9–10 12.</description><subject>Coarse DNS</subject><subject>Convection and heat transfer</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat transfer</subject><subject>k– ω–SST model</subject><subject>Natural convection</subject><subject>Physics</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Undulation</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkMFO3DAQhq2KSl1o38GXVr1k8STZJL61QtCCEL1wtybOuDurrAO2s4i3r9NF4sCFi8ej-fSP5hPiO6g1KGjOd2vebQnTHmNMAX10FNalUk0erxVsPogVdK0uSuj0iVgpBW2hK1CfxGmMu6VVdbMSfDfvKbDFUbI_UEz8FxNPXk5Opjn080g-SY_5nxE7Zcb-n7OXuLx2ZE-DjI8zBpIWD5ye5ROnrUS5nZJ8wkPucRw_i48Ox0hfXuqZuL-6vL_4Xdz--XV98fO2sLWqUtH3CKShdxVaqjeVgoGgwtK5oddVS6ruYMDO6QaaFjqiTWkdQVvrcmg1Vmfi2zH2IUyPcz7I7DlaGkf0NM3RlDpb6ZTK4I8jaMMUYyBnHgLvMTwbUGZRbHbmrWKzKF6IrDhHfH3ZhTEbdJmxHF9zukY1dVNm7ubIUb77wDklWiZvaeCQdZph4vcv_QcLuKGX</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Aounallah, M.</creator><creator>Addad, Y.</creator><creator>Benhamadouche, S.</creator><creator>Imine, O.</creator><creator>Adjlout, L.</creator><creator>Laurence, D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20070501</creationdate><title>Numerical investigation of turbulent natural convection in an inclined square cavity with a hot wavy wall</title><author>Aounallah, M. ; Addad, Y. ; Benhamadouche, S. ; Imine, O. ; Adjlout, L. ; Laurence, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-bba1e91bf3ace45301de13a2ffdb937e0481da8f9616718ee52cfe17492d79a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Coarse DNS</topic><topic>Convection and heat transfer</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat transfer</topic><topic>k– ω–SST model</topic><topic>Natural convection</topic><topic>Physics</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Undulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aounallah, M.</creatorcontrib><creatorcontrib>Addad, Y.</creatorcontrib><creatorcontrib>Benhamadouche, S.</creatorcontrib><creatorcontrib>Imine, O.</creatorcontrib><creatorcontrib>Adjlout, L.</creatorcontrib><creatorcontrib>Laurence, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aounallah, M.</au><au>Addad, Y.</au><au>Benhamadouche, S.</au><au>Imine, O.</au><au>Adjlout, L.</au><au>Laurence, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation of turbulent natural convection in an inclined square cavity with a hot wavy wall</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2007-05-01</date><risdate>2007</risdate><volume>50</volume><issue>9</issue><spage>1683</spage><epage>1693</epage><pages>1683-1693</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>The turbulent natural convection of air flow in a confined cavity with two differentially heated side walls is investigated numerically up to Rayleigh number of 10 12. The objective of the present work is to study the effect of the inclination angle and the amplitude of the undulation on turbulent heat transfer. The low-Reynolds-number k– ε, k– ω, k– ω–SST RANS models and a coarse DNS are used and compared to the experimental benchmark data of Ampofo and Karayiannis [F. Ampofo, T.G. Karayiannis, Experimental benchmark data for turbulent natural convection in an air filled square cavity, Int. J. Heat Mass Transfer 46 (2003) 3551–3572]. The k– ω–SST model is then used for the following test-cases as it gives the closest results to experimental data and coarse DNS for this case. The mean flow quantities and temperature field show good agreement with coarse DNS and measurements, but there are some slight discrepancies in the prediction of the turbulent statistics. Also, the numerical results of the heat flux at the hot wall are over predicted. The strong influence of the undulation of the cavity and its orientation is well shown. The trend of the local heat transfer is wavy with different frequencies for each undulation. The turbulence causes an increase in the convective heat transfer on the wavy wall surface compared to the square cavity for high Rayleigh numbers. A correlation of the mean Nusselt number function of the Rayleigh number is also proposed for the range of Rayleigh numbers of 10 9–10 12.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2006.10.015</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2007-05, Vol.50 (9), p.1683-1693
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_29879800
source Elsevier ScienceDirect Journals
subjects Coarse DNS
Convection and heat transfer
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Heat transfer
k– ω–SST model
Natural convection
Physics
Turbulent flows, convection, and heat transfer
Undulation
title Numerical investigation of turbulent natural convection in an inclined square cavity with a hot wavy wall
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A15%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20of%20turbulent%20natural%20convection%20in%20an%20inclined%20square%20cavity%20with%20a%20hot%20wavy%20wall&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Aounallah,%20M.&rft.date=2007-05-01&rft.volume=50&rft.issue=9&rft.spage=1683&rft.epage=1693&rft.pages=1683-1693&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2006.10.015&rft_dat=%3Cproquest_cross%3E29879800%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29879800&rft_id=info:pmid/&rft_els_id=S0017931006005849&rfr_iscdi=true