Electrical properties of undoped bulk ZnO substrates
Undoped bulk ZnO crystals obtained from Tokyo Denpa show either resistive behavior [(5 × 10^sup 4^)-(3 × 10^sup 5^) Ohm cm) or low n-type conductivity (n ≈ 10^sup 14^ cm^sup -3^) with mobilities in the latter case of 130-150 cm^sup 2^/V sec. The variation in resistivity may be related to the thermal...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2006-04, Vol.35 (4), p.663-669 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 669 |
---|---|
container_issue | 4 |
container_start_page | 663 |
container_title | Journal of electronic materials |
container_volume | 35 |
creator | Polyakov, A. Y. Smirnov, N. B. Govorkov, A. V. Kozhukhova, E. A. Pearton, S. J. Norton, D. P. Osinsky, A. Dabiran, Amir |
description | Undoped bulk ZnO crystals obtained from Tokyo Denpa show either resistive behavior [(5 × 10^sup 4^)-(3 × 10^sup 5^) Ohm cm) or low n-type conductivity (n ≈ 10^sup 14^ cm^sup -3^) with mobilities in the latter case of 130-150 cm^sup 2^/V sec. The variation in resistivity may be related to the thermal instability of Li that is present in the samples. The Fermi level is pinned by 90-meV shallow donors that are deeper than the 70 meV and hydrogen-related 35-meV shallow donors in Eagle Pitcher and Cermet substrates. In all three cases, 0.3-eV electron traps are very prominent, and in the Tokyo Denpa material they dominate the high-temperature capacitance-frequency characteristics. The concentration of these traps, on the order of 2 × 10^sup 15^ cm^sup -3^, is about 20 times higher in the Tokyo Denpa ZnO compared to the two other materials. The other electron traps at E^sub c^ -0.2 eV commonly observed in undoped n-ZnO are not detected in conducting Tokyo Denpa ZnO samples, but they may be traps that pin the Fermi level in the more compensated high-resistivity samples. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s11664-006-0117-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29873265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29873265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-614aa5c3180b5d3a08c6b755b501e756e9c59397ad27f5c287ad9eab55216e943</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouH78AG9FwVt0pukk6VGW9QMW9qIgXkKaptC1265JC-u_N8t6EjzNDO_D8PIwdoVwhwDqPiJKWXAAyQFR8d0RmyEVgqOW78dsBkIip1zQKTuLcQ2AhBpnrFh03o2hdbbLtmHY-jC2PmZDk019nc46q6buM_voV1mcqjgGO_p4wU4a20V_-TvP2dvj4nX-zJerp5f5w5I7IXDkEgtryQnUUFEtLGgnK0VUEaBXJH3pqBSlsnWuGnK5TlvpbUWUYwoLcc5uD39Ts6_Jx9Fs2uh819neD1M0eamVyCUl8OYPuB6m0KduJk9aZKlJQKKu_6WgUARSqAThAXJhiDH4xmxDu7Hh2yCYvWpzUG2SarNXbXbiB0gqb3s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204750637</pqid></control><display><type>article</type><title>Electrical properties of undoped bulk ZnO substrates</title><source>SpringerNature Journals</source><creator>Polyakov, A. Y. ; Smirnov, N. B. ; Govorkov, A. V. ; Kozhukhova, E. A. ; Pearton, S. J. ; Norton, D. P. ; Osinsky, A. ; Dabiran, Amir</creator><creatorcontrib>Polyakov, A. Y. ; Smirnov, N. B. ; Govorkov, A. V. ; Kozhukhova, E. A. ; Pearton, S. J. ; Norton, D. P. ; Osinsky, A. ; Dabiran, Amir</creatorcontrib><description>Undoped bulk ZnO crystals obtained from Tokyo Denpa show either resistive behavior [(5 × 10^sup 4^)-(3 × 10^sup 5^) Ohm cm) or low n-type conductivity (n ≈ 10^sup 14^ cm^sup -3^) with mobilities in the latter case of 130-150 cm^sup 2^/V sec. The variation in resistivity may be related to the thermal instability of Li that is present in the samples. The Fermi level is pinned by 90-meV shallow donors that are deeper than the 70 meV and hydrogen-related 35-meV shallow donors in Eagle Pitcher and Cermet substrates. In all three cases, 0.3-eV electron traps are very prominent, and in the Tokyo Denpa material they dominate the high-temperature capacitance-frequency characteristics. The concentration of these traps, on the order of 2 × 10^sup 15^ cm^sup -3^, is about 20 times higher in the Tokyo Denpa ZnO compared to the two other materials. The other electron traps at E^sub c^ -0.2 eV commonly observed in undoped n-ZnO are not detected in conducting Tokyo Denpa ZnO samples, but they may be traps that pin the Fermi level in the more compensated high-resistivity samples. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-006-0117-x</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Warrendale: Springer Nature B.V</publisher><subject>Cermets ; Crystals ; Diodes ; Electric resistance ; Electrical properties ; Electrical resistivity ; Electron traps ; Fermi level ; High temperature ; Physical properties ; Semiconductor doping ; Substrates ; Thermal instability ; Zinc oxide ; Zinc oxides</subject><ispartof>Journal of electronic materials, 2006-04, Vol.35 (4), p.663-669</ispartof><rights>Copyright Minerals, Metals & Materials Society Apr 2006</rights><rights>TMS-The Minerals, Metals and Materials Society 2006.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-614aa5c3180b5d3a08c6b755b501e756e9c59397ad27f5c287ad9eab55216e943</citedby><cites>FETCH-LOGICAL-c331t-614aa5c3180b5d3a08c6b755b501e756e9c59397ad27f5c287ad9eab55216e943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Polyakov, A. Y.</creatorcontrib><creatorcontrib>Smirnov, N. B.</creatorcontrib><creatorcontrib>Govorkov, A. V.</creatorcontrib><creatorcontrib>Kozhukhova, E. A.</creatorcontrib><creatorcontrib>Pearton, S. J.</creatorcontrib><creatorcontrib>Norton, D. P.</creatorcontrib><creatorcontrib>Osinsky, A.</creatorcontrib><creatorcontrib>Dabiran, Amir</creatorcontrib><title>Electrical properties of undoped bulk ZnO substrates</title><title>Journal of electronic materials</title><description>Undoped bulk ZnO crystals obtained from Tokyo Denpa show either resistive behavior [(5 × 10^sup 4^)-(3 × 10^sup 5^) Ohm cm) or low n-type conductivity (n ≈ 10^sup 14^ cm^sup -3^) with mobilities in the latter case of 130-150 cm^sup 2^/V sec. The variation in resistivity may be related to the thermal instability of Li that is present in the samples. The Fermi level is pinned by 90-meV shallow donors that are deeper than the 70 meV and hydrogen-related 35-meV shallow donors in Eagle Pitcher and Cermet substrates. In all three cases, 0.3-eV electron traps are very prominent, and in the Tokyo Denpa material they dominate the high-temperature capacitance-frequency characteristics. The concentration of these traps, on the order of 2 × 10^sup 15^ cm^sup -3^, is about 20 times higher in the Tokyo Denpa ZnO compared to the two other materials. The other electron traps at E^sub c^ -0.2 eV commonly observed in undoped n-ZnO are not detected in conducting Tokyo Denpa ZnO samples, but they may be traps that pin the Fermi level in the more compensated high-resistivity samples. [PUBLICATION ABSTRACT]</description><subject>Cermets</subject><subject>Crystals</subject><subject>Diodes</subject><subject>Electric resistance</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Electron traps</subject><subject>Fermi level</subject><subject>High temperature</subject><subject>Physical properties</subject><subject>Semiconductor doping</subject><subject>Substrates</subject><subject>Thermal instability</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAQhoMouH78AG9FwVt0pukk6VGW9QMW9qIgXkKaptC1265JC-u_N8t6EjzNDO_D8PIwdoVwhwDqPiJKWXAAyQFR8d0RmyEVgqOW78dsBkIip1zQKTuLcQ2AhBpnrFh03o2hdbbLtmHY-jC2PmZDk019nc46q6buM_voV1mcqjgGO_p4wU4a20V_-TvP2dvj4nX-zJerp5f5w5I7IXDkEgtryQnUUFEtLGgnK0VUEaBXJH3pqBSlsnWuGnK5TlvpbUWUYwoLcc5uD39Ts6_Jx9Fs2uh819neD1M0eamVyCUl8OYPuB6m0KduJk9aZKlJQKKu_6WgUARSqAThAXJhiDH4xmxDu7Hh2yCYvWpzUG2SarNXbXbiB0gqb3s</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Polyakov, A. Y.</creator><creator>Smirnov, N. B.</creator><creator>Govorkov, A. V.</creator><creator>Kozhukhova, E. A.</creator><creator>Pearton, S. J.</creator><creator>Norton, D. P.</creator><creator>Osinsky, A.</creator><creator>Dabiran, Amir</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20060401</creationdate><title>Electrical properties of undoped bulk ZnO substrates</title><author>Polyakov, A. Y. ; Smirnov, N. B. ; Govorkov, A. V. ; Kozhukhova, E. A. ; Pearton, S. J. ; Norton, D. P. ; Osinsky, A. ; Dabiran, Amir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-614aa5c3180b5d3a08c6b755b501e756e9c59397ad27f5c287ad9eab55216e943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Cermets</topic><topic>Crystals</topic><topic>Diodes</topic><topic>Electric resistance</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Electron traps</topic><topic>Fermi level</topic><topic>High temperature</topic><topic>Physical properties</topic><topic>Semiconductor doping</topic><topic>Substrates</topic><topic>Thermal instability</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polyakov, A. Y.</creatorcontrib><creatorcontrib>Smirnov, N. B.</creatorcontrib><creatorcontrib>Govorkov, A. V.</creatorcontrib><creatorcontrib>Kozhukhova, E. A.</creatorcontrib><creatorcontrib>Pearton, S. J.</creatorcontrib><creatorcontrib>Norton, D. P.</creatorcontrib><creatorcontrib>Osinsky, A.</creatorcontrib><creatorcontrib>Dabiran, Amir</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polyakov, A. Y.</au><au>Smirnov, N. B.</au><au>Govorkov, A. V.</au><au>Kozhukhova, E. A.</au><au>Pearton, S. J.</au><au>Norton, D. P.</au><au>Osinsky, A.</au><au>Dabiran, Amir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical properties of undoped bulk ZnO substrates</atitle><jtitle>Journal of electronic materials</jtitle><date>2006-04-01</date><risdate>2006</risdate><volume>35</volume><issue>4</issue><spage>663</spage><epage>669</epage><pages>663-669</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>Undoped bulk ZnO crystals obtained from Tokyo Denpa show either resistive behavior [(5 × 10^sup 4^)-(3 × 10^sup 5^) Ohm cm) or low n-type conductivity (n ≈ 10^sup 14^ cm^sup -3^) with mobilities in the latter case of 130-150 cm^sup 2^/V sec. The variation in resistivity may be related to the thermal instability of Li that is present in the samples. The Fermi level is pinned by 90-meV shallow donors that are deeper than the 70 meV and hydrogen-related 35-meV shallow donors in Eagle Pitcher and Cermet substrates. In all three cases, 0.3-eV electron traps are very prominent, and in the Tokyo Denpa material they dominate the high-temperature capacitance-frequency characteristics. The concentration of these traps, on the order of 2 × 10^sup 15^ cm^sup -3^, is about 20 times higher in the Tokyo Denpa ZnO compared to the two other materials. The other electron traps at E^sub c^ -0.2 eV commonly observed in undoped n-ZnO are not detected in conducting Tokyo Denpa ZnO samples, but they may be traps that pin the Fermi level in the more compensated high-resistivity samples. [PUBLICATION ABSTRACT]</abstract><cop>Warrendale</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11664-006-0117-x</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2006-04, Vol.35 (4), p.663-669 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_miscellaneous_29873265 |
source | SpringerNature Journals |
subjects | Cermets Crystals Diodes Electric resistance Electrical properties Electrical resistivity Electron traps Fermi level High temperature Physical properties Semiconductor doping Substrates Thermal instability Zinc oxide Zinc oxides |
title | Electrical properties of undoped bulk ZnO substrates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20properties%20of%20undoped%20bulk%20ZnO%20substrates&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Polyakov,%20A.%20Y.&rft.date=2006-04-01&rft.volume=35&rft.issue=4&rft.spage=663&rft.epage=669&rft.pages=663-669&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-006-0117-x&rft_dat=%3Cproquest_cross%3E29873265%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204750637&rft_id=info:pmid/&rfr_iscdi=true |