Electrical properties of undoped bulk ZnO substrates

Undoped bulk ZnO crystals obtained from Tokyo Denpa show either resistive behavior [(5 × 10^sup 4^)-(3 × 10^sup 5^) Ohm cm) or low n-type conductivity (n ≈ 10^sup 14^ cm^sup -3^) with mobilities in the latter case of 130-150 cm^sup 2^/V sec. The variation in resistivity may be related to the thermal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2006-04, Vol.35 (4), p.663-669
Hauptverfasser: Polyakov, A. Y., Smirnov, N. B., Govorkov, A. V., Kozhukhova, E. A., Pearton, S. J., Norton, D. P., Osinsky, A., Dabiran, Amir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 669
container_issue 4
container_start_page 663
container_title Journal of electronic materials
container_volume 35
creator Polyakov, A. Y.
Smirnov, N. B.
Govorkov, A. V.
Kozhukhova, E. A.
Pearton, S. J.
Norton, D. P.
Osinsky, A.
Dabiran, Amir
description Undoped bulk ZnO crystals obtained from Tokyo Denpa show either resistive behavior [(5 × 10^sup 4^)-(3 × 10^sup 5^) Ohm cm) or low n-type conductivity (n ≈ 10^sup 14^ cm^sup -3^) with mobilities in the latter case of 130-150 cm^sup 2^/V sec. The variation in resistivity may be related to the thermal instability of Li that is present in the samples. The Fermi level is pinned by 90-meV shallow donors that are deeper than the 70 meV and hydrogen-related 35-meV shallow donors in Eagle Pitcher and Cermet substrates. In all three cases, 0.3-eV electron traps are very prominent, and in the Tokyo Denpa material they dominate the high-temperature capacitance-frequency characteristics. The concentration of these traps, on the order of 2 × 10^sup 15^ cm^sup -3^, is about 20 times higher in the Tokyo Denpa ZnO compared to the two other materials. The other electron traps at E^sub c^ -0.2 eV commonly observed in undoped n-ZnO are not detected in conducting Tokyo Denpa ZnO samples, but they may be traps that pin the Fermi level in the more compensated high-resistivity samples. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s11664-006-0117-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29873265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29873265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-614aa5c3180b5d3a08c6b755b501e756e9c59397ad27f5c287ad9eab55216e943</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouH78AG9FwVt0pukk6VGW9QMW9qIgXkKaptC1265JC-u_N8t6EjzNDO_D8PIwdoVwhwDqPiJKWXAAyQFR8d0RmyEVgqOW78dsBkIip1zQKTuLcQ2AhBpnrFh03o2hdbbLtmHY-jC2PmZDk019nc46q6buM_voV1mcqjgGO_p4wU4a20V_-TvP2dvj4nX-zJerp5f5w5I7IXDkEgtryQnUUFEtLGgnK0VUEaBXJH3pqBSlsnWuGnK5TlvpbUWUYwoLcc5uD39Ts6_Jx9Fs2uh819neD1M0eamVyCUl8OYPuB6m0KduJk9aZKlJQKKu_6WgUARSqAThAXJhiDH4xmxDu7Hh2yCYvWpzUG2SarNXbXbiB0gqb3s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204750637</pqid></control><display><type>article</type><title>Electrical properties of undoped bulk ZnO substrates</title><source>SpringerNature Journals</source><creator>Polyakov, A. Y. ; Smirnov, N. B. ; Govorkov, A. V. ; Kozhukhova, E. A. ; Pearton, S. J. ; Norton, D. P. ; Osinsky, A. ; Dabiran, Amir</creator><creatorcontrib>Polyakov, A. Y. ; Smirnov, N. B. ; Govorkov, A. V. ; Kozhukhova, E. A. ; Pearton, S. J. ; Norton, D. P. ; Osinsky, A. ; Dabiran, Amir</creatorcontrib><description>Undoped bulk ZnO crystals obtained from Tokyo Denpa show either resistive behavior [(5 × 10^sup 4^)-(3 × 10^sup 5^) Ohm cm) or low n-type conductivity (n ≈ 10^sup 14^ cm^sup -3^) with mobilities in the latter case of 130-150 cm^sup 2^/V sec. The variation in resistivity may be related to the thermal instability of Li that is present in the samples. The Fermi level is pinned by 90-meV shallow donors that are deeper than the 70 meV and hydrogen-related 35-meV shallow donors in Eagle Pitcher and Cermet substrates. In all three cases, 0.3-eV electron traps are very prominent, and in the Tokyo Denpa material they dominate the high-temperature capacitance-frequency characteristics. The concentration of these traps, on the order of 2 × 10^sup 15^ cm^sup -3^, is about 20 times higher in the Tokyo Denpa ZnO compared to the two other materials. The other electron traps at E^sub c^ -0.2 eV commonly observed in undoped n-ZnO are not detected in conducting Tokyo Denpa ZnO samples, but they may be traps that pin the Fermi level in the more compensated high-resistivity samples. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-006-0117-x</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Warrendale: Springer Nature B.V</publisher><subject>Cermets ; Crystals ; Diodes ; Electric resistance ; Electrical properties ; Electrical resistivity ; Electron traps ; Fermi level ; High temperature ; Physical properties ; Semiconductor doping ; Substrates ; Thermal instability ; Zinc oxide ; Zinc oxides</subject><ispartof>Journal of electronic materials, 2006-04, Vol.35 (4), p.663-669</ispartof><rights>Copyright Minerals, Metals &amp; Materials Society Apr 2006</rights><rights>TMS-The Minerals, Metals and Materials Society 2006.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-614aa5c3180b5d3a08c6b755b501e756e9c59397ad27f5c287ad9eab55216e943</citedby><cites>FETCH-LOGICAL-c331t-614aa5c3180b5d3a08c6b755b501e756e9c59397ad27f5c287ad9eab55216e943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Polyakov, A. Y.</creatorcontrib><creatorcontrib>Smirnov, N. B.</creatorcontrib><creatorcontrib>Govorkov, A. V.</creatorcontrib><creatorcontrib>Kozhukhova, E. A.</creatorcontrib><creatorcontrib>Pearton, S. J.</creatorcontrib><creatorcontrib>Norton, D. P.</creatorcontrib><creatorcontrib>Osinsky, A.</creatorcontrib><creatorcontrib>Dabiran, Amir</creatorcontrib><title>Electrical properties of undoped bulk ZnO substrates</title><title>Journal of electronic materials</title><description>Undoped bulk ZnO crystals obtained from Tokyo Denpa show either resistive behavior [(5 × 10^sup 4^)-(3 × 10^sup 5^) Ohm cm) or low n-type conductivity (n ≈ 10^sup 14^ cm^sup -3^) with mobilities in the latter case of 130-150 cm^sup 2^/V sec. The variation in resistivity may be related to the thermal instability of Li that is present in the samples. The Fermi level is pinned by 90-meV shallow donors that are deeper than the 70 meV and hydrogen-related 35-meV shallow donors in Eagle Pitcher and Cermet substrates. In all three cases, 0.3-eV electron traps are very prominent, and in the Tokyo Denpa material they dominate the high-temperature capacitance-frequency characteristics. The concentration of these traps, on the order of 2 × 10^sup 15^ cm^sup -3^, is about 20 times higher in the Tokyo Denpa ZnO compared to the two other materials. The other electron traps at E^sub c^ -0.2 eV commonly observed in undoped n-ZnO are not detected in conducting Tokyo Denpa ZnO samples, but they may be traps that pin the Fermi level in the more compensated high-resistivity samples. [PUBLICATION ABSTRACT]</description><subject>Cermets</subject><subject>Crystals</subject><subject>Diodes</subject><subject>Electric resistance</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Electron traps</subject><subject>Fermi level</subject><subject>High temperature</subject><subject>Physical properties</subject><subject>Semiconductor doping</subject><subject>Substrates</subject><subject>Thermal instability</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAQhoMouH78AG9FwVt0pukk6VGW9QMW9qIgXkKaptC1265JC-u_N8t6EjzNDO_D8PIwdoVwhwDqPiJKWXAAyQFR8d0RmyEVgqOW78dsBkIip1zQKTuLcQ2AhBpnrFh03o2hdbbLtmHY-jC2PmZDk019nc46q6buM_voV1mcqjgGO_p4wU4a20V_-TvP2dvj4nX-zJerp5f5w5I7IXDkEgtryQnUUFEtLGgnK0VUEaBXJH3pqBSlsnWuGnK5TlvpbUWUYwoLcc5uD39Ts6_Jx9Fs2uh819neD1M0eamVyCUl8OYPuB6m0KduJk9aZKlJQKKu_6WgUARSqAThAXJhiDH4xmxDu7Hh2yCYvWpzUG2SarNXbXbiB0gqb3s</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Polyakov, A. Y.</creator><creator>Smirnov, N. B.</creator><creator>Govorkov, A. V.</creator><creator>Kozhukhova, E. A.</creator><creator>Pearton, S. J.</creator><creator>Norton, D. P.</creator><creator>Osinsky, A.</creator><creator>Dabiran, Amir</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20060401</creationdate><title>Electrical properties of undoped bulk ZnO substrates</title><author>Polyakov, A. Y. ; Smirnov, N. B. ; Govorkov, A. V. ; Kozhukhova, E. A. ; Pearton, S. J. ; Norton, D. P. ; Osinsky, A. ; Dabiran, Amir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-614aa5c3180b5d3a08c6b755b501e756e9c59397ad27f5c287ad9eab55216e943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Cermets</topic><topic>Crystals</topic><topic>Diodes</topic><topic>Electric resistance</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Electron traps</topic><topic>Fermi level</topic><topic>High temperature</topic><topic>Physical properties</topic><topic>Semiconductor doping</topic><topic>Substrates</topic><topic>Thermal instability</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polyakov, A. Y.</creatorcontrib><creatorcontrib>Smirnov, N. B.</creatorcontrib><creatorcontrib>Govorkov, A. V.</creatorcontrib><creatorcontrib>Kozhukhova, E. A.</creatorcontrib><creatorcontrib>Pearton, S. J.</creatorcontrib><creatorcontrib>Norton, D. P.</creatorcontrib><creatorcontrib>Osinsky, A.</creatorcontrib><creatorcontrib>Dabiran, Amir</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polyakov, A. Y.</au><au>Smirnov, N. B.</au><au>Govorkov, A. V.</au><au>Kozhukhova, E. A.</au><au>Pearton, S. J.</au><au>Norton, D. P.</au><au>Osinsky, A.</au><au>Dabiran, Amir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical properties of undoped bulk ZnO substrates</atitle><jtitle>Journal of electronic materials</jtitle><date>2006-04-01</date><risdate>2006</risdate><volume>35</volume><issue>4</issue><spage>663</spage><epage>669</epage><pages>663-669</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>Undoped bulk ZnO crystals obtained from Tokyo Denpa show either resistive behavior [(5 × 10^sup 4^)-(3 × 10^sup 5^) Ohm cm) or low n-type conductivity (n ≈ 10^sup 14^ cm^sup -3^) with mobilities in the latter case of 130-150 cm^sup 2^/V sec. The variation in resistivity may be related to the thermal instability of Li that is present in the samples. The Fermi level is pinned by 90-meV shallow donors that are deeper than the 70 meV and hydrogen-related 35-meV shallow donors in Eagle Pitcher and Cermet substrates. In all three cases, 0.3-eV electron traps are very prominent, and in the Tokyo Denpa material they dominate the high-temperature capacitance-frequency characteristics. The concentration of these traps, on the order of 2 × 10^sup 15^ cm^sup -3^, is about 20 times higher in the Tokyo Denpa ZnO compared to the two other materials. The other electron traps at E^sub c^ -0.2 eV commonly observed in undoped n-ZnO are not detected in conducting Tokyo Denpa ZnO samples, but they may be traps that pin the Fermi level in the more compensated high-resistivity samples. [PUBLICATION ABSTRACT]</abstract><cop>Warrendale</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11664-006-0117-x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2006-04, Vol.35 (4), p.663-669
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_miscellaneous_29873265
source SpringerNature Journals
subjects Cermets
Crystals
Diodes
Electric resistance
Electrical properties
Electrical resistivity
Electron traps
Fermi level
High temperature
Physical properties
Semiconductor doping
Substrates
Thermal instability
Zinc oxide
Zinc oxides
title Electrical properties of undoped bulk ZnO substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20properties%20of%20undoped%20bulk%20ZnO%20substrates&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Polyakov,%20A.%20Y.&rft.date=2006-04-01&rft.volume=35&rft.issue=4&rft.spage=663&rft.epage=669&rft.pages=663-669&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-006-0117-x&rft_dat=%3Cproquest_cross%3E29873265%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204750637&rft_id=info:pmid/&rfr_iscdi=true