Modeling stress-dependent matrix cracking and stress–strain behavior in 2D woven SiC fiber reinforced CVI SiC composites

2D woven Hi-Nicalon and Sylramic-iBN SiC fiber reinforced chemical vapor-infiltrated (CVI) SiC matrix composites were tested at room temperature with modal acoustic emission monitoring in order to determine relationships for stress-dependent matrix cracking. The Hi-Nicalon composites varied in the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 2007-05, Vol.67 (6), p.1009-1017
Hauptverfasser: Morscher, Gregory N., Singh, Mrityunjay, Kiser, J. Douglas, Freedman, Marc, Bhatt, Ram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1017
container_issue 6
container_start_page 1009
container_title Composites science and technology
container_volume 67
creator Morscher, Gregory N.
Singh, Mrityunjay
Kiser, J. Douglas
Freedman, Marc
Bhatt, Ram
description 2D woven Hi-Nicalon and Sylramic-iBN SiC fiber reinforced chemical vapor-infiltrated (CVI) SiC matrix composites were tested at room temperature with modal acoustic emission monitoring in order to determine relationships for stress-dependent matrix cracking. The Hi-Nicalon composites varied in the number of plies (1–36), specimen thickness, and constituent content. The Sylramic-iBN composites were fabricated with balanced and unbalanced 2D weaves in order to vary the fiber volume fraction in the orthogonal directions. Not surprisingly, matrix cracking stresses tended to be, but were not always, higher for composites with higher fiber volume fractions in the loading direction. It was demonstrated that simple relationships for stress-dependent matrix cracking could be related to the stress in the load-bearing CVI SiC matrix. For low-density composites, the 90° minicomposites do not share significant loads and matrix cracking was very similar to single tow minicomposites. For higher-density composites, where significant load is carried by the 0° minicomposites, matrix cracking was dependent on the unbridged “flaw” size, i.e., the 90° tow size or unbridged transverse crack size.
doi_str_mv 10.1016/j.compscitech.2006.06.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29865029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353806002156</els_id><sourcerecordid>29865029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e83992a471c55856047ef7a96c4edecab64cd4723ce53a48ada8029cc6e366cf3</originalsourceid><addsrcrecordid>eNqNkMFuFDEMhqMKpC5t3yE9wG2WTDLJZI5ogLZSEYdCr1HW8bRZZpMlmS7QE-_AG_IkZNiVyhHJki3582_7J-S8Zsua1er1eglxs83gJ4T7JWdMLedg7RFZ1LrtqppJ9owsGFeqElLoY_Ii5zUrhOz4gjx-iA5HH-5onhLmXDncYnAYJrqxU_LfKSQLX2bABneAfv_8VQrrA13hvd35mGip-Vv6Le4w0Bvf08GvMNGEPgwxATra3179bcznxlzOzafk-WDHjGeHfEI-v3_3qb-srj9eXPVvrisQSkwVatF13DZtDVJqqVjT4tDaTkGDDsGuVAOuabkAlMI22jqrGe8AFAqlYBAn5NVed5vi1wfMk9n4DDiONmB8yIZ3WskyUcBuD0KKOScczDb5jU0_TM3M7LZZm3_cNrPbZg7WltmXhyU2gx2HZAP4_CSgpRaN5IXr9xyWj3cekylqGIpDPiFMxkX_H9v-APqunuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29865029</pqid></control><display><type>article</type><title>Modeling stress-dependent matrix cracking and stress–strain behavior in 2D woven SiC fiber reinforced CVI SiC composites</title><source>Elsevier ScienceDirect Journals</source><creator>Morscher, Gregory N. ; Singh, Mrityunjay ; Kiser, J. Douglas ; Freedman, Marc ; Bhatt, Ram</creator><creatorcontrib>Morscher, Gregory N. ; Singh, Mrityunjay ; Kiser, J. Douglas ; Freedman, Marc ; Bhatt, Ram</creatorcontrib><description>2D woven Hi-Nicalon and Sylramic-iBN SiC fiber reinforced chemical vapor-infiltrated (CVI) SiC matrix composites were tested at room temperature with modal acoustic emission monitoring in order to determine relationships for stress-dependent matrix cracking. The Hi-Nicalon composites varied in the number of plies (1–36), specimen thickness, and constituent content. The Sylramic-iBN composites were fabricated with balanced and unbalanced 2D weaves in order to vary the fiber volume fraction in the orthogonal directions. Not surprisingly, matrix cracking stresses tended to be, but were not always, higher for composites with higher fiber volume fractions in the loading direction. It was demonstrated that simple relationships for stress-dependent matrix cracking could be related to the stress in the load-bearing CVI SiC matrix. For low-density composites, the 90° minicomposites do not share significant loads and matrix cracking was very similar to single tow minicomposites. For higher-density composites, where significant load is carried by the 0° minicomposites, matrix cracking was dependent on the unbridged “flaw” size, i.e., the 90° tow size or unbridged transverse crack size.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2006.06.007</identifier><identifier>CODEN: CSTCEH</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>A. Ceramic-matrix composites ; Applied sciences ; B. Matrix cracking ; Building materials. Ceramics. Glasses ; C. Acoustic emission ; Ceramic industries ; Cermets, ceramic and refractory composites ; Chemical industry and chemicals ; Cross-disciplinary physics: materials science; rheology ; D. Stress–strain behavior ; Exact sciences and technology ; Materials science ; Other materials ; Physics ; Specific materials ; Structural ceramics ; Technical ceramics</subject><ispartof>Composites science and technology, 2007-05, Vol.67 (6), p.1009-1017</ispartof><rights>2006 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-e83992a471c55856047ef7a96c4edecab64cd4723ce53a48ada8029cc6e366cf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0266353806002156$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18583452$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Morscher, Gregory N.</creatorcontrib><creatorcontrib>Singh, Mrityunjay</creatorcontrib><creatorcontrib>Kiser, J. Douglas</creatorcontrib><creatorcontrib>Freedman, Marc</creatorcontrib><creatorcontrib>Bhatt, Ram</creatorcontrib><title>Modeling stress-dependent matrix cracking and stress–strain behavior in 2D woven SiC fiber reinforced CVI SiC composites</title><title>Composites science and technology</title><description>2D woven Hi-Nicalon and Sylramic-iBN SiC fiber reinforced chemical vapor-infiltrated (CVI) SiC matrix composites were tested at room temperature with modal acoustic emission monitoring in order to determine relationships for stress-dependent matrix cracking. The Hi-Nicalon composites varied in the number of plies (1–36), specimen thickness, and constituent content. The Sylramic-iBN composites were fabricated with balanced and unbalanced 2D weaves in order to vary the fiber volume fraction in the orthogonal directions. Not surprisingly, matrix cracking stresses tended to be, but were not always, higher for composites with higher fiber volume fractions in the loading direction. It was demonstrated that simple relationships for stress-dependent matrix cracking could be related to the stress in the load-bearing CVI SiC matrix. For low-density composites, the 90° minicomposites do not share significant loads and matrix cracking was very similar to single tow minicomposites. For higher-density composites, where significant load is carried by the 0° minicomposites, matrix cracking was dependent on the unbridged “flaw” size, i.e., the 90° tow size or unbridged transverse crack size.</description><subject>A. Ceramic-matrix composites</subject><subject>Applied sciences</subject><subject>B. Matrix cracking</subject><subject>Building materials. Ceramics. Glasses</subject><subject>C. Acoustic emission</subject><subject>Ceramic industries</subject><subject>Cermets, ceramic and refractory composites</subject><subject>Chemical industry and chemicals</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>D. Stress–strain behavior</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Other materials</subject><subject>Physics</subject><subject>Specific materials</subject><subject>Structural ceramics</subject><subject>Technical ceramics</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkMFuFDEMhqMKpC5t3yE9wG2WTDLJZI5ogLZSEYdCr1HW8bRZZpMlmS7QE-_AG_IkZNiVyhHJki3582_7J-S8Zsua1er1eglxs83gJ4T7JWdMLedg7RFZ1LrtqppJ9owsGFeqElLoY_Ii5zUrhOz4gjx-iA5HH-5onhLmXDncYnAYJrqxU_LfKSQLX2bABneAfv_8VQrrA13hvd35mGip-Vv6Le4w0Bvf08GvMNGEPgwxATra3179bcznxlzOzafk-WDHjGeHfEI-v3_3qb-srj9eXPVvrisQSkwVatF13DZtDVJqqVjT4tDaTkGDDsGuVAOuabkAlMI22jqrGe8AFAqlYBAn5NVed5vi1wfMk9n4DDiONmB8yIZ3WskyUcBuD0KKOScczDb5jU0_TM3M7LZZm3_cNrPbZg7WltmXhyU2gx2HZAP4_CSgpRaN5IXr9xyWj3cekylqGIpDPiFMxkX_H9v-APqunuA</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Morscher, Gregory N.</creator><creator>Singh, Mrityunjay</creator><creator>Kiser, J. Douglas</creator><creator>Freedman, Marc</creator><creator>Bhatt, Ram</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>200705</creationdate><title>Modeling stress-dependent matrix cracking and stress–strain behavior in 2D woven SiC fiber reinforced CVI SiC composites</title><author>Morscher, Gregory N. ; Singh, Mrityunjay ; Kiser, J. Douglas ; Freedman, Marc ; Bhatt, Ram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e83992a471c55856047ef7a96c4edecab64cd4723ce53a48ada8029cc6e366cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>A. Ceramic-matrix composites</topic><topic>Applied sciences</topic><topic>B. Matrix cracking</topic><topic>Building materials. Ceramics. Glasses</topic><topic>C. Acoustic emission</topic><topic>Ceramic industries</topic><topic>Cermets, ceramic and refractory composites</topic><topic>Chemical industry and chemicals</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>D. Stress–strain behavior</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Other materials</topic><topic>Physics</topic><topic>Specific materials</topic><topic>Structural ceramics</topic><topic>Technical ceramics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morscher, Gregory N.</creatorcontrib><creatorcontrib>Singh, Mrityunjay</creatorcontrib><creatorcontrib>Kiser, J. Douglas</creatorcontrib><creatorcontrib>Freedman, Marc</creatorcontrib><creatorcontrib>Bhatt, Ram</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morscher, Gregory N.</au><au>Singh, Mrityunjay</au><au>Kiser, J. Douglas</au><au>Freedman, Marc</au><au>Bhatt, Ram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling stress-dependent matrix cracking and stress–strain behavior in 2D woven SiC fiber reinforced CVI SiC composites</atitle><jtitle>Composites science and technology</jtitle><date>2007-05</date><risdate>2007</risdate><volume>67</volume><issue>6</issue><spage>1009</spage><epage>1017</epage><pages>1009-1017</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><coden>CSTCEH</coden><abstract>2D woven Hi-Nicalon and Sylramic-iBN SiC fiber reinforced chemical vapor-infiltrated (CVI) SiC matrix composites were tested at room temperature with modal acoustic emission monitoring in order to determine relationships for stress-dependent matrix cracking. The Hi-Nicalon composites varied in the number of plies (1–36), specimen thickness, and constituent content. The Sylramic-iBN composites were fabricated with balanced and unbalanced 2D weaves in order to vary the fiber volume fraction in the orthogonal directions. Not surprisingly, matrix cracking stresses tended to be, but were not always, higher for composites with higher fiber volume fractions in the loading direction. It was demonstrated that simple relationships for stress-dependent matrix cracking could be related to the stress in the load-bearing CVI SiC matrix. For low-density composites, the 90° minicomposites do not share significant loads and matrix cracking was very similar to single tow minicomposites. For higher-density composites, where significant load is carried by the 0° minicomposites, matrix cracking was dependent on the unbridged “flaw” size, i.e., the 90° tow size or unbridged transverse crack size.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2006.06.007</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 2007-05, Vol.67 (6), p.1009-1017
issn 0266-3538
1879-1050
language eng
recordid cdi_proquest_miscellaneous_29865029
source Elsevier ScienceDirect Journals
subjects A. Ceramic-matrix composites
Applied sciences
B. Matrix cracking
Building materials. Ceramics. Glasses
C. Acoustic emission
Ceramic industries
Cermets, ceramic and refractory composites
Chemical industry and chemicals
Cross-disciplinary physics: materials science
rheology
D. Stress–strain behavior
Exact sciences and technology
Materials science
Other materials
Physics
Specific materials
Structural ceramics
Technical ceramics
title Modeling stress-dependent matrix cracking and stress–strain behavior in 2D woven SiC fiber reinforced CVI SiC composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A59%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20stress-dependent%20matrix%20cracking%20and%20stress%E2%80%93strain%20behavior%20in%202D%20woven%20SiC%20fiber%20reinforced%20CVI%20SiC%20composites&rft.jtitle=Composites%20science%20and%20technology&rft.au=Morscher,%20Gregory%20N.&rft.date=2007-05&rft.volume=67&rft.issue=6&rft.spage=1009&rft.epage=1017&rft.pages=1009-1017&rft.issn=0266-3538&rft.eissn=1879-1050&rft.coden=CSTCEH&rft_id=info:doi/10.1016/j.compscitech.2006.06.007&rft_dat=%3Cproquest_cross%3E29865029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29865029&rft_id=info:pmid/&rft_els_id=S0266353806002156&rfr_iscdi=true