Modeling stress-dependent matrix cracking and stress–strain behavior in 2D woven SiC fiber reinforced CVI SiC composites
2D woven Hi-Nicalon and Sylramic-iBN SiC fiber reinforced chemical vapor-infiltrated (CVI) SiC matrix composites were tested at room temperature with modal acoustic emission monitoring in order to determine relationships for stress-dependent matrix cracking. The Hi-Nicalon composites varied in the n...
Gespeichert in:
Veröffentlicht in: | Composites science and technology 2007-05, Vol.67 (6), p.1009-1017 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1017 |
---|---|
container_issue | 6 |
container_start_page | 1009 |
container_title | Composites science and technology |
container_volume | 67 |
creator | Morscher, Gregory N. Singh, Mrityunjay Kiser, J. Douglas Freedman, Marc Bhatt, Ram |
description | 2D woven Hi-Nicalon and Sylramic-iBN SiC fiber reinforced chemical vapor-infiltrated (CVI) SiC matrix composites were tested at room temperature with modal acoustic emission monitoring in order to determine relationships for stress-dependent matrix cracking. The Hi-Nicalon composites varied in the number of plies (1–36), specimen thickness, and constituent content. The Sylramic-iBN composites were fabricated with balanced and unbalanced 2D weaves in order to vary the fiber volume fraction in the orthogonal directions. Not surprisingly, matrix cracking stresses tended to be, but were not always, higher for composites with higher fiber volume fractions in the loading direction. It was demonstrated that simple relationships for stress-dependent matrix cracking could be related to the stress in the load-bearing CVI SiC matrix. For low-density composites, the 90° minicomposites do not share significant loads and matrix cracking was very similar to single tow minicomposites. For higher-density composites, where significant load is carried by the 0° minicomposites, matrix cracking was dependent on the unbridged “flaw” size, i.e., the 90° tow size or unbridged transverse crack size. |
doi_str_mv | 10.1016/j.compscitech.2006.06.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29865029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353806002156</els_id><sourcerecordid>29865029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e83992a471c55856047ef7a96c4edecab64cd4723ce53a48ada8029cc6e366cf3</originalsourceid><addsrcrecordid>eNqNkMFuFDEMhqMKpC5t3yE9wG2WTDLJZI5ogLZSEYdCr1HW8bRZZpMlmS7QE-_AG_IkZNiVyhHJki3582_7J-S8Zsua1er1eglxs83gJ4T7JWdMLedg7RFZ1LrtqppJ9owsGFeqElLoY_Ii5zUrhOz4gjx-iA5HH-5onhLmXDncYnAYJrqxU_LfKSQLX2bABneAfv_8VQrrA13hvd35mGip-Vv6Le4w0Bvf08GvMNGEPgwxATra3179bcznxlzOzafk-WDHjGeHfEI-v3_3qb-srj9eXPVvrisQSkwVatF13DZtDVJqqVjT4tDaTkGDDsGuVAOuabkAlMI22jqrGe8AFAqlYBAn5NVed5vi1wfMk9n4DDiONmB8yIZ3WskyUcBuD0KKOScczDb5jU0_TM3M7LZZm3_cNrPbZg7WltmXhyU2gx2HZAP4_CSgpRaN5IXr9xyWj3cekylqGIpDPiFMxkX_H9v-APqunuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29865029</pqid></control><display><type>article</type><title>Modeling stress-dependent matrix cracking and stress–strain behavior in 2D woven SiC fiber reinforced CVI SiC composites</title><source>Elsevier ScienceDirect Journals</source><creator>Morscher, Gregory N. ; Singh, Mrityunjay ; Kiser, J. Douglas ; Freedman, Marc ; Bhatt, Ram</creator><creatorcontrib>Morscher, Gregory N. ; Singh, Mrityunjay ; Kiser, J. Douglas ; Freedman, Marc ; Bhatt, Ram</creatorcontrib><description>2D woven Hi-Nicalon and Sylramic-iBN SiC fiber reinforced chemical vapor-infiltrated (CVI) SiC matrix composites were tested at room temperature with modal acoustic emission monitoring in order to determine relationships for stress-dependent matrix cracking. The Hi-Nicalon composites varied in the number of plies (1–36), specimen thickness, and constituent content. The Sylramic-iBN composites were fabricated with balanced and unbalanced 2D weaves in order to vary the fiber volume fraction in the orthogonal directions. Not surprisingly, matrix cracking stresses tended to be, but were not always, higher for composites with higher fiber volume fractions in the loading direction. It was demonstrated that simple relationships for stress-dependent matrix cracking could be related to the stress in the load-bearing CVI SiC matrix. For low-density composites, the 90° minicomposites do not share significant loads and matrix cracking was very similar to single tow minicomposites. For higher-density composites, where significant load is carried by the 0° minicomposites, matrix cracking was dependent on the unbridged “flaw” size, i.e., the 90° tow size or unbridged transverse crack size.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2006.06.007</identifier><identifier>CODEN: CSTCEH</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>A. Ceramic-matrix composites ; Applied sciences ; B. Matrix cracking ; Building materials. Ceramics. Glasses ; C. Acoustic emission ; Ceramic industries ; Cermets, ceramic and refractory composites ; Chemical industry and chemicals ; Cross-disciplinary physics: materials science; rheology ; D. Stress–strain behavior ; Exact sciences and technology ; Materials science ; Other materials ; Physics ; Specific materials ; Structural ceramics ; Technical ceramics</subject><ispartof>Composites science and technology, 2007-05, Vol.67 (6), p.1009-1017</ispartof><rights>2006 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-e83992a471c55856047ef7a96c4edecab64cd4723ce53a48ada8029cc6e366cf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0266353806002156$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18583452$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Morscher, Gregory N.</creatorcontrib><creatorcontrib>Singh, Mrityunjay</creatorcontrib><creatorcontrib>Kiser, J. Douglas</creatorcontrib><creatorcontrib>Freedman, Marc</creatorcontrib><creatorcontrib>Bhatt, Ram</creatorcontrib><title>Modeling stress-dependent matrix cracking and stress–strain behavior in 2D woven SiC fiber reinforced CVI SiC composites</title><title>Composites science and technology</title><description>2D woven Hi-Nicalon and Sylramic-iBN SiC fiber reinforced chemical vapor-infiltrated (CVI) SiC matrix composites were tested at room temperature with modal acoustic emission monitoring in order to determine relationships for stress-dependent matrix cracking. The Hi-Nicalon composites varied in the number of plies (1–36), specimen thickness, and constituent content. The Sylramic-iBN composites were fabricated with balanced and unbalanced 2D weaves in order to vary the fiber volume fraction in the orthogonal directions. Not surprisingly, matrix cracking stresses tended to be, but were not always, higher for composites with higher fiber volume fractions in the loading direction. It was demonstrated that simple relationships for stress-dependent matrix cracking could be related to the stress in the load-bearing CVI SiC matrix. For low-density composites, the 90° minicomposites do not share significant loads and matrix cracking was very similar to single tow minicomposites. For higher-density composites, where significant load is carried by the 0° minicomposites, matrix cracking was dependent on the unbridged “flaw” size, i.e., the 90° tow size or unbridged transverse crack size.</description><subject>A. Ceramic-matrix composites</subject><subject>Applied sciences</subject><subject>B. Matrix cracking</subject><subject>Building materials. Ceramics. Glasses</subject><subject>C. Acoustic emission</subject><subject>Ceramic industries</subject><subject>Cermets, ceramic and refractory composites</subject><subject>Chemical industry and chemicals</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>D. Stress–strain behavior</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Other materials</subject><subject>Physics</subject><subject>Specific materials</subject><subject>Structural ceramics</subject><subject>Technical ceramics</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkMFuFDEMhqMKpC5t3yE9wG2WTDLJZI5ogLZSEYdCr1HW8bRZZpMlmS7QE-_AG_IkZNiVyhHJki3582_7J-S8Zsua1er1eglxs83gJ4T7JWdMLedg7RFZ1LrtqppJ9owsGFeqElLoY_Ii5zUrhOz4gjx-iA5HH-5onhLmXDncYnAYJrqxU_LfKSQLX2bABneAfv_8VQrrA13hvd35mGip-Vv6Le4w0Bvf08GvMNGEPgwxATra3179bcznxlzOzafk-WDHjGeHfEI-v3_3qb-srj9eXPVvrisQSkwVatF13DZtDVJqqVjT4tDaTkGDDsGuVAOuabkAlMI22jqrGe8AFAqlYBAn5NVed5vi1wfMk9n4DDiONmB8yIZ3WskyUcBuD0KKOScczDb5jU0_TM3M7LZZm3_cNrPbZg7WltmXhyU2gx2HZAP4_CSgpRaN5IXr9xyWj3cekylqGIpDPiFMxkX_H9v-APqunuA</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Morscher, Gregory N.</creator><creator>Singh, Mrityunjay</creator><creator>Kiser, J. Douglas</creator><creator>Freedman, Marc</creator><creator>Bhatt, Ram</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>200705</creationdate><title>Modeling stress-dependent matrix cracking and stress–strain behavior in 2D woven SiC fiber reinforced CVI SiC composites</title><author>Morscher, Gregory N. ; Singh, Mrityunjay ; Kiser, J. Douglas ; Freedman, Marc ; Bhatt, Ram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e83992a471c55856047ef7a96c4edecab64cd4723ce53a48ada8029cc6e366cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>A. Ceramic-matrix composites</topic><topic>Applied sciences</topic><topic>B. Matrix cracking</topic><topic>Building materials. Ceramics. Glasses</topic><topic>C. Acoustic emission</topic><topic>Ceramic industries</topic><topic>Cermets, ceramic and refractory composites</topic><topic>Chemical industry and chemicals</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>D. Stress–strain behavior</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Other materials</topic><topic>Physics</topic><topic>Specific materials</topic><topic>Structural ceramics</topic><topic>Technical ceramics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morscher, Gregory N.</creatorcontrib><creatorcontrib>Singh, Mrityunjay</creatorcontrib><creatorcontrib>Kiser, J. Douglas</creatorcontrib><creatorcontrib>Freedman, Marc</creatorcontrib><creatorcontrib>Bhatt, Ram</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morscher, Gregory N.</au><au>Singh, Mrityunjay</au><au>Kiser, J. Douglas</au><au>Freedman, Marc</au><au>Bhatt, Ram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling stress-dependent matrix cracking and stress–strain behavior in 2D woven SiC fiber reinforced CVI SiC composites</atitle><jtitle>Composites science and technology</jtitle><date>2007-05</date><risdate>2007</risdate><volume>67</volume><issue>6</issue><spage>1009</spage><epage>1017</epage><pages>1009-1017</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><coden>CSTCEH</coden><abstract>2D woven Hi-Nicalon and Sylramic-iBN SiC fiber reinforced chemical vapor-infiltrated (CVI) SiC matrix composites were tested at room temperature with modal acoustic emission monitoring in order to determine relationships for stress-dependent matrix cracking. The Hi-Nicalon composites varied in the number of plies (1–36), specimen thickness, and constituent content. The Sylramic-iBN composites were fabricated with balanced and unbalanced 2D weaves in order to vary the fiber volume fraction in the orthogonal directions. Not surprisingly, matrix cracking stresses tended to be, but were not always, higher for composites with higher fiber volume fractions in the loading direction. It was demonstrated that simple relationships for stress-dependent matrix cracking could be related to the stress in the load-bearing CVI SiC matrix. For low-density composites, the 90° minicomposites do not share significant loads and matrix cracking was very similar to single tow minicomposites. For higher-density composites, where significant load is carried by the 0° minicomposites, matrix cracking was dependent on the unbridged “flaw” size, i.e., the 90° tow size or unbridged transverse crack size.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2006.06.007</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-3538 |
ispartof | Composites science and technology, 2007-05, Vol.67 (6), p.1009-1017 |
issn | 0266-3538 1879-1050 |
language | eng |
recordid | cdi_proquest_miscellaneous_29865029 |
source | Elsevier ScienceDirect Journals |
subjects | A. Ceramic-matrix composites Applied sciences B. Matrix cracking Building materials. Ceramics. Glasses C. Acoustic emission Ceramic industries Cermets, ceramic and refractory composites Chemical industry and chemicals Cross-disciplinary physics: materials science rheology D. Stress–strain behavior Exact sciences and technology Materials science Other materials Physics Specific materials Structural ceramics Technical ceramics |
title | Modeling stress-dependent matrix cracking and stress–strain behavior in 2D woven SiC fiber reinforced CVI SiC composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A59%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20stress-dependent%20matrix%20cracking%20and%20stress%E2%80%93strain%20behavior%20in%202D%20woven%20SiC%20fiber%20reinforced%20CVI%20SiC%20composites&rft.jtitle=Composites%20science%20and%20technology&rft.au=Morscher,%20Gregory%20N.&rft.date=2007-05&rft.volume=67&rft.issue=6&rft.spage=1009&rft.epage=1017&rft.pages=1009-1017&rft.issn=0266-3538&rft.eissn=1879-1050&rft.coden=CSTCEH&rft_id=info:doi/10.1016/j.compscitech.2006.06.007&rft_dat=%3Cproquest_cross%3E29865029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29865029&rft_id=info:pmid/&rft_els_id=S0266353806002156&rfr_iscdi=true |