Lyapunov first method for nonholonomic systems with circulatory forces

We consider the problem of instability of equilibrium states of scleronomic nonholonomic systems moving in a stationary field of conservative and circulatory forces. The applied methodology is based on the existence of solutions of differential equations of motion which asymptotically tend to the eq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical and computer modelling 2007-05, Vol.45 (9), p.1145-1156
Hauptverfasser: VESKOVIC, Miroslav, COVIC, Vukman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1156
container_issue 9
container_start_page 1145
container_title Mathematical and computer modelling
container_volume 45
creator VESKOVIC, Miroslav
COVIC, Vukman
description We consider the problem of instability of equilibrium states of scleronomic nonholonomic systems moving in a stationary field of conservative and circulatory forces. The applied methodology is based on the existence of solutions of differential equations of motion which asymptotically tend to the equilibrium state of the system. It is assumed that the forces in the neighbourhood of the equilibrium position can be presented in the form of the sum of two components, the first one being a homogeneous function of the position with the positive degree of homogeneity; the second one being infinitely small in comparison to the first one. The results obtained, which partially generalize results from [S.D. Taliaferro, Instability of an equilibrium in a potential field, Arch. Ration. Mech. Anal. 109 (2) (1990) 183–194; V.A. Vujičić, V.V. Kozlov, Lyapunov’s stability with respect to given state functions, J. Appl. Math. Mech. 55 (4) 9 (1991) 442–445; D.R. Merkin, Introduction to the Theory of the Stability of Motion, Nauka, Moscow, 1987 (in Russian); A.V. Karapetyan, On stability of equilibrium of nonholonomic systems, Prikl. Mat. Mekh. 39 (6) (1975) 1135–1140 (in Russian)], are illustrated by an example.
doi_str_mv 10.1016/j.mcm.2006.09.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29860152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089571770600344X</els_id><sourcerecordid>29860152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-cc49758a99f8bfe02f31adc9920e2270bbe53f52fff58c684e98091fa05710353</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKs_wNte9LbrJNs0CZ5ErAoFL3oO6XRCU3Y3NdlW-u_d0oI3T3P53hvex9gth4oDnz6sqxbbSgBMKzAVcHnGRlwrUZqJMudsBNrIUnGlLtlVzmsAkAb0iM3me7fZdnFX-JByX7TUr-Ky8DEVXexWsYldbAMWeZ97anPxE_pVgSHhtnF9TPsDiZSv2YV3Taab0x2zr9nL5_NbOf94fX9-mpdYS92XiBOjpHbGeL3wBMLX3C3RGAEkhILFgmTtpfDeS41TPSGjwXDvQCoOtazH7P7Yu0nxe0u5t23ISE3jOorbbIXR02G8GEB-BDHFnBN5u0mhdWlvOdiDMbu2gzF7MGbB2CE0ZO5O5S6ja3xyHYb8F9TS1FLVA_d45GhYuguUbMZAHdIyJMLeLmP458svPK6Bqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29860152</pqid></control><display><type>article</type><title>Lyapunov first method for nonholonomic systems with circulatory forces</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>VESKOVIC, Miroslav ; COVIC, Vukman</creator><creatorcontrib>VESKOVIC, Miroslav ; COVIC, Vukman</creatorcontrib><description>We consider the problem of instability of equilibrium states of scleronomic nonholonomic systems moving in a stationary field of conservative and circulatory forces. The applied methodology is based on the existence of solutions of differential equations of motion which asymptotically tend to the equilibrium state of the system. It is assumed that the forces in the neighbourhood of the equilibrium position can be presented in the form of the sum of two components, the first one being a homogeneous function of the position with the positive degree of homogeneity; the second one being infinitely small in comparison to the first one. The results obtained, which partially generalize results from [S.D. Taliaferro, Instability of an equilibrium in a potential field, Arch. Ration. Mech. Anal. 109 (2) (1990) 183–194; V.A. Vujičić, V.V. Kozlov, Lyapunov’s stability with respect to given state functions, J. Appl. Math. Mech. 55 (4) 9 (1991) 442–445; D.R. Merkin, Introduction to the Theory of the Stability of Motion, Nauka, Moscow, 1987 (in Russian); A.V. Karapetyan, On stability of equilibrium of nonholonomic systems, Prikl. Mat. Mekh. 39 (6) (1975) 1135–1140 (in Russian)], are illustrated by an example.</description><identifier>ISSN: 0895-7177</identifier><identifier>EISSN: 1872-9479</identifier><identifier>DOI: 10.1016/j.mcm.2006.09.015</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Circulatory forces ; Exact sciences and technology ; Global analysis, analysis on manifolds ; Instability ; Mathematical analysis ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Nonholonomic ; Numerical analysis. Scientific computation ; Ordinary differential equations ; Potential ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Mathematical and computer modelling, 2007-05, Vol.45 (9), p.1145-1156</ispartof><rights>2006 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-cc49758a99f8bfe02f31adc9920e2270bbe53f52fff58c684e98091fa05710353</citedby><cites>FETCH-LOGICAL-c358t-cc49758a99f8bfe02f31adc9920e2270bbe53f52fff58c684e98091fa05710353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mcm.2006.09.015$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18593573$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>VESKOVIC, Miroslav</creatorcontrib><creatorcontrib>COVIC, Vukman</creatorcontrib><title>Lyapunov first method for nonholonomic systems with circulatory forces</title><title>Mathematical and computer modelling</title><description>We consider the problem of instability of equilibrium states of scleronomic nonholonomic systems moving in a stationary field of conservative and circulatory forces. The applied methodology is based on the existence of solutions of differential equations of motion which asymptotically tend to the equilibrium state of the system. It is assumed that the forces in the neighbourhood of the equilibrium position can be presented in the form of the sum of two components, the first one being a homogeneous function of the position with the positive degree of homogeneity; the second one being infinitely small in comparison to the first one. The results obtained, which partially generalize results from [S.D. Taliaferro, Instability of an equilibrium in a potential field, Arch. Ration. Mech. Anal. 109 (2) (1990) 183–194; V.A. Vujičić, V.V. Kozlov, Lyapunov’s stability with respect to given state functions, J. Appl. Math. Mech. 55 (4) 9 (1991) 442–445; D.R. Merkin, Introduction to the Theory of the Stability of Motion, Nauka, Moscow, 1987 (in Russian); A.V. Karapetyan, On stability of equilibrium of nonholonomic systems, Prikl. Mat. Mekh. 39 (6) (1975) 1135–1140 (in Russian)], are illustrated by an example.</description><subject>Circulatory forces</subject><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Instability</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Nonholonomic</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>Potential</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0895-7177</issn><issn>1872-9479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKs_wNte9LbrJNs0CZ5ErAoFL3oO6XRCU3Y3NdlW-u_d0oI3T3P53hvex9gth4oDnz6sqxbbSgBMKzAVcHnGRlwrUZqJMudsBNrIUnGlLtlVzmsAkAb0iM3me7fZdnFX-JByX7TUr-Ky8DEVXexWsYldbAMWeZ97anPxE_pVgSHhtnF9TPsDiZSv2YV3Taab0x2zr9nL5_NbOf94fX9-mpdYS92XiBOjpHbGeL3wBMLX3C3RGAEkhILFgmTtpfDeS41TPSGjwXDvQCoOtazH7P7Yu0nxe0u5t23ISE3jOorbbIXR02G8GEB-BDHFnBN5u0mhdWlvOdiDMbu2gzF7MGbB2CE0ZO5O5S6ja3xyHYb8F9TS1FLVA_d45GhYuguUbMZAHdIyJMLeLmP458svPK6Bqg</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>VESKOVIC, Miroslav</creator><creator>COVIC, Vukman</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070501</creationdate><title>Lyapunov first method for nonholonomic systems with circulatory forces</title><author>VESKOVIC, Miroslav ; COVIC, Vukman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-cc49758a99f8bfe02f31adc9920e2270bbe53f52fff58c684e98091fa05710353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Circulatory forces</topic><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Instability</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Nonholonomic</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>Potential</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VESKOVIC, Miroslav</creatorcontrib><creatorcontrib>COVIC, Vukman</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical and computer modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VESKOVIC, Miroslav</au><au>COVIC, Vukman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lyapunov first method for nonholonomic systems with circulatory forces</atitle><jtitle>Mathematical and computer modelling</jtitle><date>2007-05-01</date><risdate>2007</risdate><volume>45</volume><issue>9</issue><spage>1145</spage><epage>1156</epage><pages>1145-1156</pages><issn>0895-7177</issn><eissn>1872-9479</eissn><abstract>We consider the problem of instability of equilibrium states of scleronomic nonholonomic systems moving in a stationary field of conservative and circulatory forces. The applied methodology is based on the existence of solutions of differential equations of motion which asymptotically tend to the equilibrium state of the system. It is assumed that the forces in the neighbourhood of the equilibrium position can be presented in the form of the sum of two components, the first one being a homogeneous function of the position with the positive degree of homogeneity; the second one being infinitely small in comparison to the first one. The results obtained, which partially generalize results from [S.D. Taliaferro, Instability of an equilibrium in a potential field, Arch. Ration. Mech. Anal. 109 (2) (1990) 183–194; V.A. Vujičić, V.V. Kozlov, Lyapunov’s stability with respect to given state functions, J. Appl. Math. Mech. 55 (4) 9 (1991) 442–445; D.R. Merkin, Introduction to the Theory of the Stability of Motion, Nauka, Moscow, 1987 (in Russian); A.V. Karapetyan, On stability of equilibrium of nonholonomic systems, Prikl. Mat. Mekh. 39 (6) (1975) 1135–1140 (in Russian)], are illustrated by an example.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.mcm.2006.09.015</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0895-7177
ispartof Mathematical and computer modelling, 2007-05, Vol.45 (9), p.1145-1156
issn 0895-7177
1872-9479
language eng
recordid cdi_proquest_miscellaneous_29860152
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Circulatory forces
Exact sciences and technology
Global analysis, analysis on manifolds
Instability
Mathematical analysis
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
Nonholonomic
Numerical analysis. Scientific computation
Ordinary differential equations
Potential
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Lyapunov first method for nonholonomic systems with circulatory forces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lyapunov%20first%20method%20for%20nonholonomic%20systems%20with%20circulatory%20forces&rft.jtitle=Mathematical%20and%20computer%20modelling&rft.au=VESKOVIC,%20Miroslav&rft.date=2007-05-01&rft.volume=45&rft.issue=9&rft.spage=1145&rft.epage=1156&rft.pages=1145-1156&rft.issn=0895-7177&rft.eissn=1872-9479&rft_id=info:doi/10.1016/j.mcm.2006.09.015&rft_dat=%3Cproquest_cross%3E29860152%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29860152&rft_id=info:pmid/&rft_els_id=S089571770600344X&rfr_iscdi=true