Lyapunov first method for nonholonomic systems with circulatory forces
We consider the problem of instability of equilibrium states of scleronomic nonholonomic systems moving in a stationary field of conservative and circulatory forces. The applied methodology is based on the existence of solutions of differential equations of motion which asymptotically tend to the eq...
Gespeichert in:
Veröffentlicht in: | Mathematical and computer modelling 2007-05, Vol.45 (9), p.1145-1156 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1156 |
---|---|
container_issue | 9 |
container_start_page | 1145 |
container_title | Mathematical and computer modelling |
container_volume | 45 |
creator | VESKOVIC, Miroslav COVIC, Vukman |
description | We consider the problem of instability of equilibrium states of scleronomic nonholonomic systems moving in a stationary field of conservative and circulatory forces. The applied methodology is based on the existence of solutions of differential equations of motion which asymptotically tend to the equilibrium state of the system. It is assumed that the forces in the neighbourhood of the equilibrium position can be presented in the form of the sum of two components, the first one being a homogeneous function of the position with the positive degree of homogeneity; the second one being infinitely small in comparison to the first one. The results obtained, which partially generalize results from [S.D. Taliaferro, Instability of an equilibrium in a potential field, Arch. Ration. Mech. Anal. 109 (2) (1990) 183–194; V.A. Vujičić, V.V. Kozlov, Lyapunov’s stability with respect to given state functions, J. Appl. Math. Mech. 55 (4) 9 (1991) 442–445; D.R. Merkin, Introduction to the Theory of the Stability of Motion, Nauka, Moscow, 1987 (in Russian); A.V. Karapetyan, On stability of equilibrium of nonholonomic systems, Prikl. Mat. Mekh. 39 (6) (1975) 1135–1140 (in Russian)], are illustrated by an example. |
doi_str_mv | 10.1016/j.mcm.2006.09.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29860152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089571770600344X</els_id><sourcerecordid>29860152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-cc49758a99f8bfe02f31adc9920e2270bbe53f52fff58c684e98091fa05710353</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKs_wNte9LbrJNs0CZ5ErAoFL3oO6XRCU3Y3NdlW-u_d0oI3T3P53hvex9gth4oDnz6sqxbbSgBMKzAVcHnGRlwrUZqJMudsBNrIUnGlLtlVzmsAkAb0iM3me7fZdnFX-JByX7TUr-Ky8DEVXexWsYldbAMWeZ97anPxE_pVgSHhtnF9TPsDiZSv2YV3Taab0x2zr9nL5_NbOf94fX9-mpdYS92XiBOjpHbGeL3wBMLX3C3RGAEkhILFgmTtpfDeS41TPSGjwXDvQCoOtazH7P7Yu0nxe0u5t23ISE3jOorbbIXR02G8GEB-BDHFnBN5u0mhdWlvOdiDMbu2gzF7MGbB2CE0ZO5O5S6ja3xyHYb8F9TS1FLVA_d45GhYuguUbMZAHdIyJMLeLmP458svPK6Bqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29860152</pqid></control><display><type>article</type><title>Lyapunov first method for nonholonomic systems with circulatory forces</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>VESKOVIC, Miroslav ; COVIC, Vukman</creator><creatorcontrib>VESKOVIC, Miroslav ; COVIC, Vukman</creatorcontrib><description>We consider the problem of instability of equilibrium states of scleronomic nonholonomic systems moving in a stationary field of conservative and circulatory forces. The applied methodology is based on the existence of solutions of differential equations of motion which asymptotically tend to the equilibrium state of the system. It is assumed that the forces in the neighbourhood of the equilibrium position can be presented in the form of the sum of two components, the first one being a homogeneous function of the position with the positive degree of homogeneity; the second one being infinitely small in comparison to the first one. The results obtained, which partially generalize results from [S.D. Taliaferro, Instability of an equilibrium in a potential field, Arch. Ration. Mech. Anal. 109 (2) (1990) 183–194; V.A. Vujičić, V.V. Kozlov, Lyapunov’s stability with respect to given state functions, J. Appl. Math. Mech. 55 (4) 9 (1991) 442–445; D.R. Merkin, Introduction to the Theory of the Stability of Motion, Nauka, Moscow, 1987 (in Russian); A.V. Karapetyan, On stability of equilibrium of nonholonomic systems, Prikl. Mat. Mekh. 39 (6) (1975) 1135–1140 (in Russian)], are illustrated by an example.</description><identifier>ISSN: 0895-7177</identifier><identifier>EISSN: 1872-9479</identifier><identifier>DOI: 10.1016/j.mcm.2006.09.015</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Circulatory forces ; Exact sciences and technology ; Global analysis, analysis on manifolds ; Instability ; Mathematical analysis ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Nonholonomic ; Numerical analysis. Scientific computation ; Ordinary differential equations ; Potential ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Mathematical and computer modelling, 2007-05, Vol.45 (9), p.1145-1156</ispartof><rights>2006 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-cc49758a99f8bfe02f31adc9920e2270bbe53f52fff58c684e98091fa05710353</citedby><cites>FETCH-LOGICAL-c358t-cc49758a99f8bfe02f31adc9920e2270bbe53f52fff58c684e98091fa05710353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mcm.2006.09.015$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18593573$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>VESKOVIC, Miroslav</creatorcontrib><creatorcontrib>COVIC, Vukman</creatorcontrib><title>Lyapunov first method for nonholonomic systems with circulatory forces</title><title>Mathematical and computer modelling</title><description>We consider the problem of instability of equilibrium states of scleronomic nonholonomic systems moving in a stationary field of conservative and circulatory forces. The applied methodology is based on the existence of solutions of differential equations of motion which asymptotically tend to the equilibrium state of the system. It is assumed that the forces in the neighbourhood of the equilibrium position can be presented in the form of the sum of two components, the first one being a homogeneous function of the position with the positive degree of homogeneity; the second one being infinitely small in comparison to the first one. The results obtained, which partially generalize results from [S.D. Taliaferro, Instability of an equilibrium in a potential field, Arch. Ration. Mech. Anal. 109 (2) (1990) 183–194; V.A. Vujičić, V.V. Kozlov, Lyapunov’s stability with respect to given state functions, J. Appl. Math. Mech. 55 (4) 9 (1991) 442–445; D.R. Merkin, Introduction to the Theory of the Stability of Motion, Nauka, Moscow, 1987 (in Russian); A.V. Karapetyan, On stability of equilibrium of nonholonomic systems, Prikl. Mat. Mekh. 39 (6) (1975) 1135–1140 (in Russian)], are illustrated by an example.</description><subject>Circulatory forces</subject><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Instability</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Nonholonomic</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>Potential</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0895-7177</issn><issn>1872-9479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKs_wNte9LbrJNs0CZ5ErAoFL3oO6XRCU3Y3NdlW-u_d0oI3T3P53hvex9gth4oDnz6sqxbbSgBMKzAVcHnGRlwrUZqJMudsBNrIUnGlLtlVzmsAkAb0iM3me7fZdnFX-JByX7TUr-Ky8DEVXexWsYldbAMWeZ97anPxE_pVgSHhtnF9TPsDiZSv2YV3Taab0x2zr9nL5_NbOf94fX9-mpdYS92XiBOjpHbGeL3wBMLX3C3RGAEkhILFgmTtpfDeS41TPSGjwXDvQCoOtazH7P7Yu0nxe0u5t23ISE3jOorbbIXR02G8GEB-BDHFnBN5u0mhdWlvOdiDMbu2gzF7MGbB2CE0ZO5O5S6ja3xyHYb8F9TS1FLVA_d45GhYuguUbMZAHdIyJMLeLmP458svPK6Bqg</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>VESKOVIC, Miroslav</creator><creator>COVIC, Vukman</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070501</creationdate><title>Lyapunov first method for nonholonomic systems with circulatory forces</title><author>VESKOVIC, Miroslav ; COVIC, Vukman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-cc49758a99f8bfe02f31adc9920e2270bbe53f52fff58c684e98091fa05710353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Circulatory forces</topic><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Instability</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Nonholonomic</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>Potential</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VESKOVIC, Miroslav</creatorcontrib><creatorcontrib>COVIC, Vukman</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical and computer modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VESKOVIC, Miroslav</au><au>COVIC, Vukman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lyapunov first method for nonholonomic systems with circulatory forces</atitle><jtitle>Mathematical and computer modelling</jtitle><date>2007-05-01</date><risdate>2007</risdate><volume>45</volume><issue>9</issue><spage>1145</spage><epage>1156</epage><pages>1145-1156</pages><issn>0895-7177</issn><eissn>1872-9479</eissn><abstract>We consider the problem of instability of equilibrium states of scleronomic nonholonomic systems moving in a stationary field of conservative and circulatory forces. The applied methodology is based on the existence of solutions of differential equations of motion which asymptotically tend to the equilibrium state of the system. It is assumed that the forces in the neighbourhood of the equilibrium position can be presented in the form of the sum of two components, the first one being a homogeneous function of the position with the positive degree of homogeneity; the second one being infinitely small in comparison to the first one. The results obtained, which partially generalize results from [S.D. Taliaferro, Instability of an equilibrium in a potential field, Arch. Ration. Mech. Anal. 109 (2) (1990) 183–194; V.A. Vujičić, V.V. Kozlov, Lyapunov’s stability with respect to given state functions, J. Appl. Math. Mech. 55 (4) 9 (1991) 442–445; D.R. Merkin, Introduction to the Theory of the Stability of Motion, Nauka, Moscow, 1987 (in Russian); A.V. Karapetyan, On stability of equilibrium of nonholonomic systems, Prikl. Mat. Mekh. 39 (6) (1975) 1135–1140 (in Russian)], are illustrated by an example.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.mcm.2006.09.015</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-7177 |
ispartof | Mathematical and computer modelling, 2007-05, Vol.45 (9), p.1145-1156 |
issn | 0895-7177 1872-9479 |
language | eng |
recordid | cdi_proquest_miscellaneous_29860152 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Circulatory forces Exact sciences and technology Global analysis, analysis on manifolds Instability Mathematical analysis Mathematics Methods of scientific computing (including symbolic computation, algebraic computation) Nonholonomic Numerical analysis. Scientific computation Ordinary differential equations Potential Sciences and techniques of general use Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
title | Lyapunov first method for nonholonomic systems with circulatory forces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lyapunov%20first%20method%20for%20nonholonomic%20systems%20with%20circulatory%20forces&rft.jtitle=Mathematical%20and%20computer%20modelling&rft.au=VESKOVIC,%20Miroslav&rft.date=2007-05-01&rft.volume=45&rft.issue=9&rft.spage=1145&rft.epage=1156&rft.pages=1145-1156&rft.issn=0895-7177&rft.eissn=1872-9479&rft_id=info:doi/10.1016/j.mcm.2006.09.015&rft_dat=%3Cproquest_cross%3E29860152%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29860152&rft_id=info:pmid/&rft_els_id=S089571770600344X&rfr_iscdi=true |