Snow water equivalent in the Sierra Nevada: Blending snow sensor observations with snowmelt model simulations

We estimate the spatial distribution of daily melt‐season snow water equivalent (SWE) over the Sierra Nevada for March to August, 2000–2012, by two methods: reconstruction by combining remotely sensed snow cover images with a spatially distributed snowmelt model and a blended method in which the rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2013-08, Vol.49 (8), p.5029-5046
Hauptverfasser: Guan, Bin, Molotch, Noah P., Waliser, Duane E., Jepsen, Steven M., Painter, Thomas H., Dozier, Jeff
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5046
container_issue 8
container_start_page 5029
container_title Water resources research
container_volume 49
creator Guan, Bin
Molotch, Noah P.
Waliser, Duane E.
Jepsen, Steven M.
Painter, Thomas H.
Dozier, Jeff
description We estimate the spatial distribution of daily melt‐season snow water equivalent (SWE) over the Sierra Nevada for March to August, 2000–2012, by two methods: reconstruction by combining remotely sensed snow cover images with a spatially distributed snowmelt model and a blended method in which the reconstruction is combined with in situ snow sensor observations. We validate the methods with 17 snow surveys at six locations with spatial sampling and with the operational snow sensor network. We also compare the methods with NOAA's operational Snow Data Assimilation System (SNODAS). Mean biases of the methods compared to the snow surveys are −0.193 m (reconstruction), 0.001 m (blended), and −0.181 m (SNODAS). Corresponding root‐mean‐square errors are 0.252, 0.205, and 0.254 m. Comparison between blended and snow sensor SWE suggests that the current sensor network inadequately represents SWE in the Sierra Nevada because of the low spatial density of sensors in the lower/higher elevations. Mean correlation with streamflow in 19 Sierra Nevada watersheds is better with reconstructed SWE (r = 0.91) versus blended SWE (r = 0.81), snow sensor SWE (r = 0.85), and SNODAS SWE (r = 0.86). On the other hand, the correlation with blended SWE is generally better than with reconstructed, snow sensor, and SNODAS SWE late in the snowmelt season when snow sensors report zero SWE but snow remains in the higher elevations. Sensitivity tests indicate downwelling longwave radiation, snow albedo, forest density, and turbulent fluxes are potentially important sources of errors/uncertainties in reconstructed SWE, and domain‐mean blended SWE is relatively insensitive to the number of snow sensors blended. Key Points The blended SWE product is more accurate than the NOAA SWE product Satellite‐based snow cover depletion data improves SWE estimation Sensitivity tests suggest four key sources of uncertainties in reconstructed SWE
doi_str_mv 10.1002/wrcr.20387
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2986008827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1566836920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4057-e2f1f772c31cf0a34bb5c4156545b4be49d2a698359bd60e804daae6c196af93</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EEsvChV9giQtCShl_xI650S0sSKVI25V6tJxkQl2SuLWTDf33ZBvgwAFOPrzPMyPPS8hLBicMgL-dYhVPOIhCPyIrZqTMtNHiMVkBSJExYfRT8iylGwAmc6VXpLvsw0QnN2CkeDf6g2uxH6jv6XCN9NJjjI5e4MHV7h09nbPa999oOkoJ-xQiDWXCeHCDD32ikx-uH9IO24F2ocaWJt-N7ZI_J08a1yZ88etdk_3HD_vNp-z86_bz5v15VknIdYa8YY3WvBKsasAJWZZ5JVmucpmXskRpau6UKURuyloBFiBr51BVzCjXGLEmr5extzHcjZgG2_lUYdu6HsOYLDeFAigKrv-LzktVIZSZb7omr_5Cb8IY-_kflinJoVBc8Jl6s1BVDClFbOxt9J2L95aBPXZkjx3Zh45mmC3w5Fu8_wdpr3ab3W8nWxyfBvzxx3Hxu1Va6NxeXWzt_hS-bM-20u7ET9_SpFI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642086232</pqid></control><display><type>article</type><title>Snow water equivalent in the Sierra Nevada: Blending snow sensor observations with snowmelt model simulations</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Guan, Bin ; Molotch, Noah P. ; Waliser, Duane E. ; Jepsen, Steven M. ; Painter, Thomas H. ; Dozier, Jeff</creator><creatorcontrib>Guan, Bin ; Molotch, Noah P. ; Waliser, Duane E. ; Jepsen, Steven M. ; Painter, Thomas H. ; Dozier, Jeff</creatorcontrib><description>We estimate the spatial distribution of daily melt‐season snow water equivalent (SWE) over the Sierra Nevada for March to August, 2000–2012, by two methods: reconstruction by combining remotely sensed snow cover images with a spatially distributed snowmelt model and a blended method in which the reconstruction is combined with in situ snow sensor observations. We validate the methods with 17 snow surveys at six locations with spatial sampling and with the operational snow sensor network. We also compare the methods with NOAA's operational Snow Data Assimilation System (SNODAS). Mean biases of the methods compared to the snow surveys are −0.193 m (reconstruction), 0.001 m (blended), and −0.181 m (SNODAS). Corresponding root‐mean‐square errors are 0.252, 0.205, and 0.254 m. Comparison between blended and snow sensor SWE suggests that the current sensor network inadequately represents SWE in the Sierra Nevada because of the low spatial density of sensors in the lower/higher elevations. Mean correlation with streamflow in 19 Sierra Nevada watersheds is better with reconstructed SWE (r = 0.91) versus blended SWE (r = 0.81), snow sensor SWE (r = 0.85), and SNODAS SWE (r = 0.86). On the other hand, the correlation with blended SWE is generally better than with reconstructed, snow sensor, and SNODAS SWE late in the snowmelt season when snow sensors report zero SWE but snow remains in the higher elevations. Sensitivity tests indicate downwelling longwave radiation, snow albedo, forest density, and turbulent fluxes are potentially important sources of errors/uncertainties in reconstructed SWE, and domain‐mean blended SWE is relatively insensitive to the number of snow sensors blended. Key Points The blended SWE product is more accurate than the NOAA SWE product Satellite‐based snow cover depletion data improves SWE estimation Sensitivity tests suggest four key sources of uncertainties in reconstructed SWE</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/wrcr.20387</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Albedo ; Data collection ; forests ; Meteorology ; Methods ; mountains ; remote sensing ; Sensors ; Sierra Nevada ; Snow ; Snow cover ; Snow surveys ; Snow-water equivalent ; Snowmelt ; snowmelt model ; snowpack ; Spatial distribution ; Stream discharge ; Stream flow ; terrestrial radiation ; water</subject><ispartof>Water resources research, 2013-08, Vol.49 (8), p.5029-5046</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4057-e2f1f772c31cf0a34bb5c4156545b4be49d2a698359bd60e804daae6c196af93</citedby><cites>FETCH-LOGICAL-c4057-e2f1f772c31cf0a34bb5c4156545b4be49d2a698359bd60e804daae6c196af93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwrcr.20387$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwrcr.20387$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,11495,27905,27906,45555,45556,46449,46873</link.rule.ids></links><search><creatorcontrib>Guan, Bin</creatorcontrib><creatorcontrib>Molotch, Noah P.</creatorcontrib><creatorcontrib>Waliser, Duane E.</creatorcontrib><creatorcontrib>Jepsen, Steven M.</creatorcontrib><creatorcontrib>Painter, Thomas H.</creatorcontrib><creatorcontrib>Dozier, Jeff</creatorcontrib><title>Snow water equivalent in the Sierra Nevada: Blending snow sensor observations with snowmelt model simulations</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>We estimate the spatial distribution of daily melt‐season snow water equivalent (SWE) over the Sierra Nevada for March to August, 2000–2012, by two methods: reconstruction by combining remotely sensed snow cover images with a spatially distributed snowmelt model and a blended method in which the reconstruction is combined with in situ snow sensor observations. We validate the methods with 17 snow surveys at six locations with spatial sampling and with the operational snow sensor network. We also compare the methods with NOAA's operational Snow Data Assimilation System (SNODAS). Mean biases of the methods compared to the snow surveys are −0.193 m (reconstruction), 0.001 m (blended), and −0.181 m (SNODAS). Corresponding root‐mean‐square errors are 0.252, 0.205, and 0.254 m. Comparison between blended and snow sensor SWE suggests that the current sensor network inadequately represents SWE in the Sierra Nevada because of the low spatial density of sensors in the lower/higher elevations. Mean correlation with streamflow in 19 Sierra Nevada watersheds is better with reconstructed SWE (r = 0.91) versus blended SWE (r = 0.81), snow sensor SWE (r = 0.85), and SNODAS SWE (r = 0.86). On the other hand, the correlation with blended SWE is generally better than with reconstructed, snow sensor, and SNODAS SWE late in the snowmelt season when snow sensors report zero SWE but snow remains in the higher elevations. Sensitivity tests indicate downwelling longwave radiation, snow albedo, forest density, and turbulent fluxes are potentially important sources of errors/uncertainties in reconstructed SWE, and domain‐mean blended SWE is relatively insensitive to the number of snow sensors blended. Key Points The blended SWE product is more accurate than the NOAA SWE product Satellite‐based snow cover depletion data improves SWE estimation Sensitivity tests suggest four key sources of uncertainties in reconstructed SWE</description><subject>Albedo</subject><subject>Data collection</subject><subject>forests</subject><subject>Meteorology</subject><subject>Methods</subject><subject>mountains</subject><subject>remote sensing</subject><subject>Sensors</subject><subject>Sierra Nevada</subject><subject>Snow</subject><subject>Snow cover</subject><subject>Snow surveys</subject><subject>Snow-water equivalent</subject><subject>Snowmelt</subject><subject>snowmelt model</subject><subject>snowpack</subject><subject>Spatial distribution</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>terrestrial radiation</subject><subject>water</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EEsvChV9giQtCShl_xI650S0sSKVI25V6tJxkQl2SuLWTDf33ZBvgwAFOPrzPMyPPS8hLBicMgL-dYhVPOIhCPyIrZqTMtNHiMVkBSJExYfRT8iylGwAmc6VXpLvsw0QnN2CkeDf6g2uxH6jv6XCN9NJjjI5e4MHV7h09nbPa999oOkoJ-xQiDWXCeHCDD32ikx-uH9IO24F2ocaWJt-N7ZI_J08a1yZ88etdk_3HD_vNp-z86_bz5v15VknIdYa8YY3WvBKsasAJWZZ5JVmucpmXskRpau6UKURuyloBFiBr51BVzCjXGLEmr5extzHcjZgG2_lUYdu6HsOYLDeFAigKrv-LzktVIZSZb7omr_5Cb8IY-_kflinJoVBc8Jl6s1BVDClFbOxt9J2L95aBPXZkjx3Zh45mmC3w5Fu8_wdpr3ab3W8nWxyfBvzxx3Hxu1Va6NxeXWzt_hS-bM-20u7ET9_SpFI</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Guan, Bin</creator><creator>Molotch, Noah P.</creator><creator>Waliser, Duane E.</creator><creator>Jepsen, Steven M.</creator><creator>Painter, Thomas H.</creator><creator>Dozier, Jeff</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>H97</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>201308</creationdate><title>Snow water equivalent in the Sierra Nevada: Blending snow sensor observations with snowmelt model simulations</title><author>Guan, Bin ; Molotch, Noah P. ; Waliser, Duane E. ; Jepsen, Steven M. ; Painter, Thomas H. ; Dozier, Jeff</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4057-e2f1f772c31cf0a34bb5c4156545b4be49d2a698359bd60e804daae6c196af93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Albedo</topic><topic>Data collection</topic><topic>forests</topic><topic>Meteorology</topic><topic>Methods</topic><topic>mountains</topic><topic>remote sensing</topic><topic>Sensors</topic><topic>Sierra Nevada</topic><topic>Snow</topic><topic>Snow cover</topic><topic>Snow surveys</topic><topic>Snow-water equivalent</topic><topic>Snowmelt</topic><topic>snowmelt model</topic><topic>snowpack</topic><topic>Spatial distribution</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>terrestrial radiation</topic><topic>water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Bin</creatorcontrib><creatorcontrib>Molotch, Noah P.</creatorcontrib><creatorcontrib>Waliser, Duane E.</creatorcontrib><creatorcontrib>Jepsen, Steven M.</creatorcontrib><creatorcontrib>Painter, Thomas H.</creatorcontrib><creatorcontrib>Dozier, Jeff</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Bin</au><au>Molotch, Noah P.</au><au>Waliser, Duane E.</au><au>Jepsen, Steven M.</au><au>Painter, Thomas H.</au><au>Dozier, Jeff</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Snow water equivalent in the Sierra Nevada: Blending snow sensor observations with snowmelt model simulations</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2013-08</date><risdate>2013</risdate><volume>49</volume><issue>8</issue><spage>5029</spage><epage>5046</epage><pages>5029-5046</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>We estimate the spatial distribution of daily melt‐season snow water equivalent (SWE) over the Sierra Nevada for March to August, 2000–2012, by two methods: reconstruction by combining remotely sensed snow cover images with a spatially distributed snowmelt model and a blended method in which the reconstruction is combined with in situ snow sensor observations. We validate the methods with 17 snow surveys at six locations with spatial sampling and with the operational snow sensor network. We also compare the methods with NOAA's operational Snow Data Assimilation System (SNODAS). Mean biases of the methods compared to the snow surveys are −0.193 m (reconstruction), 0.001 m (blended), and −0.181 m (SNODAS). Corresponding root‐mean‐square errors are 0.252, 0.205, and 0.254 m. Comparison between blended and snow sensor SWE suggests that the current sensor network inadequately represents SWE in the Sierra Nevada because of the low spatial density of sensors in the lower/higher elevations. Mean correlation with streamflow in 19 Sierra Nevada watersheds is better with reconstructed SWE (r = 0.91) versus blended SWE (r = 0.81), snow sensor SWE (r = 0.85), and SNODAS SWE (r = 0.86). On the other hand, the correlation with blended SWE is generally better than with reconstructed, snow sensor, and SNODAS SWE late in the snowmelt season when snow sensors report zero SWE but snow remains in the higher elevations. Sensitivity tests indicate downwelling longwave radiation, snow albedo, forest density, and turbulent fluxes are potentially important sources of errors/uncertainties in reconstructed SWE, and domain‐mean blended SWE is relatively insensitive to the number of snow sensors blended. Key Points The blended SWE product is more accurate than the NOAA SWE product Satellite‐based snow cover depletion data improves SWE estimation Sensitivity tests suggest four key sources of uncertainties in reconstructed SWE</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/wrcr.20387</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2013-08, Vol.49 (8), p.5029-5046
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_2986008827
source Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell AGU Digital Library
subjects Albedo
Data collection
forests
Meteorology
Methods
mountains
remote sensing
Sensors
Sierra Nevada
Snow
Snow cover
Snow surveys
Snow-water equivalent
Snowmelt
snowmelt model
snowpack
Spatial distribution
Stream discharge
Stream flow
terrestrial radiation
water
title Snow water equivalent in the Sierra Nevada: Blending snow sensor observations with snowmelt model simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A20%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Snow%20water%20equivalent%20in%20the%20Sierra%20Nevada:%20Blending%20snow%20sensor%20observations%20with%20snowmelt%20model%20simulations&rft.jtitle=Water%20resources%20research&rft.au=Guan,%20Bin&rft.date=2013-08&rft.volume=49&rft.issue=8&rft.spage=5029&rft.epage=5046&rft.pages=5029-5046&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/wrcr.20387&rft_dat=%3Cproquest_cross%3E1566836920%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642086232&rft_id=info:pmid/&rfr_iscdi=true