A Generative Model of Terrain for Autonomous Navigation in Vegetation
Current approaches to off-road autonomous navigation are often limited by their ability to build a terrain model from sensor data. Available sensors make very indirect measurements of quantities of interest such as the supporting ground height and the location of obstacles, especially in domains whe...
Gespeichert in:
Veröffentlicht in: | The International journal of robotics research 2006-12, Vol.25 (12), p.1287-1304 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1304 |
---|---|
container_issue | 12 |
container_start_page | 1287 |
container_title | The International journal of robotics research |
container_volume | 25 |
creator | Wellington, Carl Courville, Aaron Stentz, Anthony (Tony) |
description | Current approaches to off-road autonomous navigation are often limited by their ability to build a terrain model from sensor data. Available sensors make very indirect measurements of quantities of interest such as the supporting ground height and the location of obstacles, especially in domains where vegetation may hide the ground surface or partially obscure obstacles. A generative, probabilistic terrain model is introduced that exploits natural structure found in off-road environments to constrain the problem and use ambiguous sensor data more effectively. The model includes two Markov random fields that encode the assumptions that ground heights smoothly vary and terrain classes tend to cluster. The model also includes a latent variable that encodes the assumption that vegetation of a single type has a similar height. The model parameters can be trained by simply driving through representative terrain. Results from a number of challenging test scenarios in an agricultural domain reveal that exploiting the 3D structure inherent in outdoor domains significantly improves ground estimates and obstacle detection accuracy, and allows the system to infer the supporting ground surface even when it is hidden under dense vegetation. |
doi_str_mv | 10.1177/0278364906072769 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29860034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0278364906072769</sage_id><sourcerecordid>29860034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-a2d73817ce5c723e072d11def2b4bd7ff611113bc4d9122c22931cc8925840ba3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKt3j8GDt9V8NdkcS6lV8ONSvYZsdlK2bDc12S34702tIBScy8zwPjO8MwhdU3JHqVL3hKmSS6GJJIopqU_QiCpBC06VPEWjvVzs9XN0kdKaEMIl0SM0n-IFdBBt3-wAv4QaWhw8XkKMtumwDxFPhz50YROGhF_trlllNHQ4ix-wgv6nu0Rn3rYJrn7zGL0_zJezx-L5bfE0mz4Xjpe0LyyrVS6Ug4lTjEN2WlNag2eVqGrlvaQ5eOVErSljjjHNqXOlZpNSkMryMbo97N3G8DlA6s2mSQ7a1naQ_RmmS5kvExm8OQLXYYhd9mYYJ0SUopQZIgfIxZBSBG-2sdnY-GUoMfunmuOn5pHiMJLsCv52_st_A4indOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230048486</pqid></control><display><type>article</type><title>A Generative Model of Terrain for Autonomous Navigation in Vegetation</title><source>Access via SAGE</source><creator>Wellington, Carl ; Courville, Aaron ; Stentz, Anthony (Tony)</creator><creatorcontrib>Wellington, Carl ; Courville, Aaron ; Stentz, Anthony (Tony)</creatorcontrib><description>Current approaches to off-road autonomous navigation are often limited by their ability to build a terrain model from sensor data. Available sensors make very indirect measurements of quantities of interest such as the supporting ground height and the location of obstacles, especially in domains where vegetation may hide the ground surface or partially obscure obstacles. A generative, probabilistic terrain model is introduced that exploits natural structure found in off-road environments to constrain the problem and use ambiguous sensor data more effectively. The model includes two Markov random fields that encode the assumptions that ground heights smoothly vary and terrain classes tend to cluster. The model also includes a latent variable that encodes the assumption that vegetation of a single type has a similar height. The model parameters can be trained by simply driving through representative terrain. Results from a number of challenging test scenarios in an agricultural domain reveal that exploiting the 3D structure inherent in outdoor domains significantly improves ground estimates and obstacle detection accuracy, and allows the system to infer the supporting ground surface even when it is hidden under dense vegetation.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/0278364906072769</identifier><identifier>CODEN: IJRREL</identifier><language>eng</language><publisher>Thousand Oaks, CA: Sage Publications</publisher><subject>Learning ; Markov analysis ; Mathematical models ; Parameter estimation ; Studies ; Vegetation mapping</subject><ispartof>The International journal of robotics research, 2006-12, Vol.25 (12), p.1287-1304</ispartof><rights>Copyright SAGE PUBLICATIONS, INC. Dec 1, 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-a2d73817ce5c723e072d11def2b4bd7ff611113bc4d9122c22931cc8925840ba3</citedby><cites>FETCH-LOGICAL-c381t-a2d73817ce5c723e072d11def2b4bd7ff611113bc4d9122c22931cc8925840ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0278364906072769$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0278364906072769$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Wellington, Carl</creatorcontrib><creatorcontrib>Courville, Aaron</creatorcontrib><creatorcontrib>Stentz, Anthony (Tony)</creatorcontrib><title>A Generative Model of Terrain for Autonomous Navigation in Vegetation</title><title>The International journal of robotics research</title><description>Current approaches to off-road autonomous navigation are often limited by their ability to build a terrain model from sensor data. Available sensors make very indirect measurements of quantities of interest such as the supporting ground height and the location of obstacles, especially in domains where vegetation may hide the ground surface or partially obscure obstacles. A generative, probabilistic terrain model is introduced that exploits natural structure found in off-road environments to constrain the problem and use ambiguous sensor data more effectively. The model includes two Markov random fields that encode the assumptions that ground heights smoothly vary and terrain classes tend to cluster. The model also includes a latent variable that encodes the assumption that vegetation of a single type has a similar height. The model parameters can be trained by simply driving through representative terrain. Results from a number of challenging test scenarios in an agricultural domain reveal that exploiting the 3D structure inherent in outdoor domains significantly improves ground estimates and obstacle detection accuracy, and allows the system to infer the supporting ground surface even when it is hidden under dense vegetation.</description><subject>Learning</subject><subject>Markov analysis</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Studies</subject><subject>Vegetation mapping</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKt3j8GDt9V8NdkcS6lV8ONSvYZsdlK2bDc12S34702tIBScy8zwPjO8MwhdU3JHqVL3hKmSS6GJJIopqU_QiCpBC06VPEWjvVzs9XN0kdKaEMIl0SM0n-IFdBBt3-wAv4QaWhw8XkKMtumwDxFPhz50YROGhF_trlllNHQ4ix-wgv6nu0Rn3rYJrn7zGL0_zJezx-L5bfE0mz4Xjpe0LyyrVS6Ug4lTjEN2WlNag2eVqGrlvaQ5eOVErSljjjHNqXOlZpNSkMryMbo97N3G8DlA6s2mSQ7a1naQ_RmmS5kvExm8OQLXYYhd9mYYJ0SUopQZIgfIxZBSBG-2sdnY-GUoMfunmuOn5pHiMJLsCv52_st_A4indOA</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Wellington, Carl</creator><creator>Courville, Aaron</creator><creator>Stentz, Anthony (Tony)</creator><general>Sage Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>200612</creationdate><title>A Generative Model of Terrain for Autonomous Navigation in Vegetation</title><author>Wellington, Carl ; Courville, Aaron ; Stentz, Anthony (Tony)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-a2d73817ce5c723e072d11def2b4bd7ff611113bc4d9122c22931cc8925840ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Learning</topic><topic>Markov analysis</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Studies</topic><topic>Vegetation mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wellington, Carl</creatorcontrib><creatorcontrib>Courville, Aaron</creatorcontrib><creatorcontrib>Stentz, Anthony (Tony)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wellington, Carl</au><au>Courville, Aaron</au><au>Stentz, Anthony (Tony)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Generative Model of Terrain for Autonomous Navigation in Vegetation</atitle><jtitle>The International journal of robotics research</jtitle><date>2006-12</date><risdate>2006</risdate><volume>25</volume><issue>12</issue><spage>1287</spage><epage>1304</epage><pages>1287-1304</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><coden>IJRREL</coden><abstract>Current approaches to off-road autonomous navigation are often limited by their ability to build a terrain model from sensor data. Available sensors make very indirect measurements of quantities of interest such as the supporting ground height and the location of obstacles, especially in domains where vegetation may hide the ground surface or partially obscure obstacles. A generative, probabilistic terrain model is introduced that exploits natural structure found in off-road environments to constrain the problem and use ambiguous sensor data more effectively. The model includes two Markov random fields that encode the assumptions that ground heights smoothly vary and terrain classes tend to cluster. The model also includes a latent variable that encodes the assumption that vegetation of a single type has a similar height. The model parameters can be trained by simply driving through representative terrain. Results from a number of challenging test scenarios in an agricultural domain reveal that exploiting the 3D structure inherent in outdoor domains significantly improves ground estimates and obstacle detection accuracy, and allows the system to infer the supporting ground surface even when it is hidden under dense vegetation.</abstract><cop>Thousand Oaks, CA</cop><pub>Sage Publications</pub><doi>10.1177/0278364906072769</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-3649 |
ispartof | The International journal of robotics research, 2006-12, Vol.25 (12), p.1287-1304 |
issn | 0278-3649 1741-3176 |
language | eng |
recordid | cdi_proquest_miscellaneous_29860034 |
source | Access via SAGE |
subjects | Learning Markov analysis Mathematical models Parameter estimation Studies Vegetation mapping |
title | A Generative Model of Terrain for Autonomous Navigation in Vegetation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Generative%20Model%20of%20Terrain%20for%20Autonomous%20Navigation%20in%20Vegetation&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Wellington,%20Carl&rft.date=2006-12&rft.volume=25&rft.issue=12&rft.spage=1287&rft.epage=1304&rft.pages=1287-1304&rft.issn=0278-3649&rft.eissn=1741-3176&rft.coden=IJRREL&rft_id=info:doi/10.1177/0278364906072769&rft_dat=%3Cproquest_cross%3E29860034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230048486&rft_id=info:pmid/&rft_sage_id=10.1177_0278364906072769&rfr_iscdi=true |