A Generative Model of Terrain for Autonomous Navigation in Vegetation

Current approaches to off-road autonomous navigation are often limited by their ability to build a terrain model from sensor data. Available sensors make very indirect measurements of quantities of interest such as the supporting ground height and the location of obstacles, especially in domains whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of robotics research 2006-12, Vol.25 (12), p.1287-1304
Hauptverfasser: Wellington, Carl, Courville, Aaron, Stentz, Anthony (Tony)
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1304
container_issue 12
container_start_page 1287
container_title The International journal of robotics research
container_volume 25
creator Wellington, Carl
Courville, Aaron
Stentz, Anthony (Tony)
description Current approaches to off-road autonomous navigation are often limited by their ability to build a terrain model from sensor data. Available sensors make very indirect measurements of quantities of interest such as the supporting ground height and the location of obstacles, especially in domains where vegetation may hide the ground surface or partially obscure obstacles. A generative, probabilistic terrain model is introduced that exploits natural structure found in off-road environments to constrain the problem and use ambiguous sensor data more effectively. The model includes two Markov random fields that encode the assumptions that ground heights smoothly vary and terrain classes tend to cluster. The model also includes a latent variable that encodes the assumption that vegetation of a single type has a similar height. The model parameters can be trained by simply driving through representative terrain. Results from a number of challenging test scenarios in an agricultural domain reveal that exploiting the 3D structure inherent in outdoor domains significantly improves ground estimates and obstacle detection accuracy, and allows the system to infer the supporting ground surface even when it is hidden under dense vegetation.
doi_str_mv 10.1177/0278364906072769
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29860034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0278364906072769</sage_id><sourcerecordid>29860034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-a2d73817ce5c723e072d11def2b4bd7ff611113bc4d9122c22931cc8925840ba3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKt3j8GDt9V8NdkcS6lV8ONSvYZsdlK2bDc12S34702tIBScy8zwPjO8MwhdU3JHqVL3hKmSS6GJJIopqU_QiCpBC06VPEWjvVzs9XN0kdKaEMIl0SM0n-IFdBBt3-wAv4QaWhw8XkKMtumwDxFPhz50YROGhF_trlllNHQ4ix-wgv6nu0Rn3rYJrn7zGL0_zJezx-L5bfE0mz4Xjpe0LyyrVS6Ug4lTjEN2WlNag2eVqGrlvaQ5eOVErSljjjHNqXOlZpNSkMryMbo97N3G8DlA6s2mSQ7a1naQ_RmmS5kvExm8OQLXYYhd9mYYJ0SUopQZIgfIxZBSBG-2sdnY-GUoMfunmuOn5pHiMJLsCv52_st_A4indOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230048486</pqid></control><display><type>article</type><title>A Generative Model of Terrain for Autonomous Navigation in Vegetation</title><source>Access via SAGE</source><creator>Wellington, Carl ; Courville, Aaron ; Stentz, Anthony (Tony)</creator><creatorcontrib>Wellington, Carl ; Courville, Aaron ; Stentz, Anthony (Tony)</creatorcontrib><description>Current approaches to off-road autonomous navigation are often limited by their ability to build a terrain model from sensor data. Available sensors make very indirect measurements of quantities of interest such as the supporting ground height and the location of obstacles, especially in domains where vegetation may hide the ground surface or partially obscure obstacles. A generative, probabilistic terrain model is introduced that exploits natural structure found in off-road environments to constrain the problem and use ambiguous sensor data more effectively. The model includes two Markov random fields that encode the assumptions that ground heights smoothly vary and terrain classes tend to cluster. The model also includes a latent variable that encodes the assumption that vegetation of a single type has a similar height. The model parameters can be trained by simply driving through representative terrain. Results from a number of challenging test scenarios in an agricultural domain reveal that exploiting the 3D structure inherent in outdoor domains significantly improves ground estimates and obstacle detection accuracy, and allows the system to infer the supporting ground surface even when it is hidden under dense vegetation.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/0278364906072769</identifier><identifier>CODEN: IJRREL</identifier><language>eng</language><publisher>Thousand Oaks, CA: Sage Publications</publisher><subject>Learning ; Markov analysis ; Mathematical models ; Parameter estimation ; Studies ; Vegetation mapping</subject><ispartof>The International journal of robotics research, 2006-12, Vol.25 (12), p.1287-1304</ispartof><rights>Copyright SAGE PUBLICATIONS, INC. Dec 1, 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-a2d73817ce5c723e072d11def2b4bd7ff611113bc4d9122c22931cc8925840ba3</citedby><cites>FETCH-LOGICAL-c381t-a2d73817ce5c723e072d11def2b4bd7ff611113bc4d9122c22931cc8925840ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0278364906072769$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0278364906072769$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Wellington, Carl</creatorcontrib><creatorcontrib>Courville, Aaron</creatorcontrib><creatorcontrib>Stentz, Anthony (Tony)</creatorcontrib><title>A Generative Model of Terrain for Autonomous Navigation in Vegetation</title><title>The International journal of robotics research</title><description>Current approaches to off-road autonomous navigation are often limited by their ability to build a terrain model from sensor data. Available sensors make very indirect measurements of quantities of interest such as the supporting ground height and the location of obstacles, especially in domains where vegetation may hide the ground surface or partially obscure obstacles. A generative, probabilistic terrain model is introduced that exploits natural structure found in off-road environments to constrain the problem and use ambiguous sensor data more effectively. The model includes two Markov random fields that encode the assumptions that ground heights smoothly vary and terrain classes tend to cluster. The model also includes a latent variable that encodes the assumption that vegetation of a single type has a similar height. The model parameters can be trained by simply driving through representative terrain. Results from a number of challenging test scenarios in an agricultural domain reveal that exploiting the 3D structure inherent in outdoor domains significantly improves ground estimates and obstacle detection accuracy, and allows the system to infer the supporting ground surface even when it is hidden under dense vegetation.</description><subject>Learning</subject><subject>Markov analysis</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Studies</subject><subject>Vegetation mapping</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKt3j8GDt9V8NdkcS6lV8ONSvYZsdlK2bDc12S34702tIBScy8zwPjO8MwhdU3JHqVL3hKmSS6GJJIopqU_QiCpBC06VPEWjvVzs9XN0kdKaEMIl0SM0n-IFdBBt3-wAv4QaWhw8XkKMtumwDxFPhz50YROGhF_trlllNHQ4ix-wgv6nu0Rn3rYJrn7zGL0_zJezx-L5bfE0mz4Xjpe0LyyrVS6Ug4lTjEN2WlNag2eVqGrlvaQ5eOVErSljjjHNqXOlZpNSkMryMbo97N3G8DlA6s2mSQ7a1naQ_RmmS5kvExm8OQLXYYhd9mYYJ0SUopQZIgfIxZBSBG-2sdnY-GUoMfunmuOn5pHiMJLsCv52_st_A4indOA</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Wellington, Carl</creator><creator>Courville, Aaron</creator><creator>Stentz, Anthony (Tony)</creator><general>Sage Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>200612</creationdate><title>A Generative Model of Terrain for Autonomous Navigation in Vegetation</title><author>Wellington, Carl ; Courville, Aaron ; Stentz, Anthony (Tony)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-a2d73817ce5c723e072d11def2b4bd7ff611113bc4d9122c22931cc8925840ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Learning</topic><topic>Markov analysis</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Studies</topic><topic>Vegetation mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wellington, Carl</creatorcontrib><creatorcontrib>Courville, Aaron</creatorcontrib><creatorcontrib>Stentz, Anthony (Tony)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wellington, Carl</au><au>Courville, Aaron</au><au>Stentz, Anthony (Tony)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Generative Model of Terrain for Autonomous Navigation in Vegetation</atitle><jtitle>The International journal of robotics research</jtitle><date>2006-12</date><risdate>2006</risdate><volume>25</volume><issue>12</issue><spage>1287</spage><epage>1304</epage><pages>1287-1304</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><coden>IJRREL</coden><abstract>Current approaches to off-road autonomous navigation are often limited by their ability to build a terrain model from sensor data. Available sensors make very indirect measurements of quantities of interest such as the supporting ground height and the location of obstacles, especially in domains where vegetation may hide the ground surface or partially obscure obstacles. A generative, probabilistic terrain model is introduced that exploits natural structure found in off-road environments to constrain the problem and use ambiguous sensor data more effectively. The model includes two Markov random fields that encode the assumptions that ground heights smoothly vary and terrain classes tend to cluster. The model also includes a latent variable that encodes the assumption that vegetation of a single type has a similar height. The model parameters can be trained by simply driving through representative terrain. Results from a number of challenging test scenarios in an agricultural domain reveal that exploiting the 3D structure inherent in outdoor domains significantly improves ground estimates and obstacle detection accuracy, and allows the system to infer the supporting ground surface even when it is hidden under dense vegetation.</abstract><cop>Thousand Oaks, CA</cop><pub>Sage Publications</pub><doi>10.1177/0278364906072769</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-3649
ispartof The International journal of robotics research, 2006-12, Vol.25 (12), p.1287-1304
issn 0278-3649
1741-3176
language eng
recordid cdi_proquest_miscellaneous_29860034
source Access via SAGE
subjects Learning
Markov analysis
Mathematical models
Parameter estimation
Studies
Vegetation mapping
title A Generative Model of Terrain for Autonomous Navigation in Vegetation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Generative%20Model%20of%20Terrain%20for%20Autonomous%20Navigation%20in%20Vegetation&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Wellington,%20Carl&rft.date=2006-12&rft.volume=25&rft.issue=12&rft.spage=1287&rft.epage=1304&rft.pages=1287-1304&rft.issn=0278-3649&rft.eissn=1741-3176&rft.coden=IJRREL&rft_id=info:doi/10.1177/0278364906072769&rft_dat=%3Cproquest_cross%3E29860034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230048486&rft_id=info:pmid/&rft_sage_id=10.1177_0278364906072769&rfr_iscdi=true