Exact learning dynamics of deep linear networks with prior knowledge

Learning in deep neural networks is known to depend critically on the knowledge embedded in the initial network weights. However, few theoretical results have precisely linked prior knowledge to learning dynamics. Here we derive exact solutions to the dynamics of learning with rich prior knowledge i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical mechanics 2023-11, Vol.2023 (11), p.114004-114004
Hauptverfasser: J Dominé, Clémentine C, Braun, Lukas, Fitzgerald, James E, Saxe, Andrew M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114004
container_issue 11
container_start_page 114004
container_title Journal of statistical mechanics
container_volume 2023
creator J Dominé, Clémentine C
Braun, Lukas
Fitzgerald, James E
Saxe, Andrew M
description Learning in deep neural networks is known to depend critically on the knowledge embedded in the initial network weights. However, few theoretical results have precisely linked prior knowledge to learning dynamics. Here we derive exact solutions to the dynamics of learning with rich prior knowledge in deep linear networks by generalising Fukumizu's matrix Riccati solution (Fukumizu 1998 1E-03). We obtain explicit expressions for the evolving network function, hidden representational similarity, and neural tangent kernel over training for a broad class of initialisations and tasks. The expressions reveal a class of task-independent initialisations that radically alter learning dynamics from slow non-linear dynamics to fast exponential trajectories while converging to a global optimum with identical representational similarity, dissociating learning trajectories from the structure of initial internal representations. We characterise how network weights dynamically align with task structure, rigorously justifying why previous solutions successfully described learning from small initial weights without incorporating their fine-scale structure. Finally, we discuss the implications of these findings for continual learning, reversal learning and learning of structured knowledge. Taken together, our results provide a mathematical toolkit for understanding the impact of prior knowledge on deep learning.
doi_str_mv 10.1088/1742-5468/ad01b8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2985795000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2985795000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-e9898140baa184d44d8be75658f4f5af6a0599e7a88bfa209420dc9a906a5fad3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EolDYmZBHBkqdxE7sCaFSPqRKLDBbl9hp3SZ2sFNK_3tStVRlYLrTvXfvTj-EriJyFxHOh1FG4wGjKR-CIlHOj9DZfnR80PfQeQhzQpKYUH6KeglnMY1ZcoYex99QtLjS4K2xU6zWFmpTBOxKrLRucGVsp2Gr25Xzi4BXpp3hxhvn8cK6VaXVVF-gkxKqoC93tY8-nsbvo5fB5O35dfQwGRQJz9qBFlzwiJIcIOJUUap4rjOWMl7SkkGZAmFC6Aw4z0uIiaAxUYUAQVJgJaikj-63uc0yr7UqtG09VLL7pga_lg6M_KtYM5NT9yUjIhhLSdIl3OwSvPtc6tDK2oRCVxVY7ZZBxoKzTDDSoeojsrUW3oXgdbm_ExG5oS83eOUGr9zS71auD__bL_zi7gy3W4NxjZy7pbcdrv_zfgDYlI-L</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2985795000</pqid></control><display><type>article</type><title>Exact learning dynamics of deep linear networks with prior knowledge</title><source>HEAL-Link subscriptions: Institute of Physics (IOP) Journals</source><source>Institute of Physics Journals</source><creator>J Dominé, Clémentine C ; Braun, Lukas ; Fitzgerald, James E ; Saxe, Andrew M</creator><creatorcontrib>J Dominé, Clémentine C ; Braun, Lukas ; Fitzgerald, James E ; Saxe, Andrew M</creatorcontrib><description>Learning in deep neural networks is known to depend critically on the knowledge embedded in the initial network weights. However, few theoretical results have precisely linked prior knowledge to learning dynamics. Here we derive exact solutions to the dynamics of learning with rich prior knowledge in deep linear networks by generalising Fukumizu's matrix Riccati solution (Fukumizu 1998 1E-03). We obtain explicit expressions for the evolving network function, hidden representational similarity, and neural tangent kernel over training for a broad class of initialisations and tasks. The expressions reveal a class of task-independent initialisations that radically alter learning dynamics from slow non-linear dynamics to fast exponential trajectories while converging to a global optimum with identical representational similarity, dissociating learning trajectories from the structure of initial internal representations. We characterise how network weights dynamically align with task structure, rigorously justifying why previous solutions successfully described learning from small initial weights without incorporating their fine-scale structure. Finally, we discuss the implications of these findings for continual learning, reversal learning and learning of structured knowledge. Taken together, our results provide a mathematical toolkit for understanding the impact of prior knowledge on deep learning.</description><identifier>ISSN: 1742-5468</identifier><identifier>EISSN: 1742-5468</identifier><identifier>DOI: 10.1088/1742-5468/ad01b8</identifier><identifier>PMID: 38524253</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>deep learning ; learning theory ; machine learning ; Machine Learning 2023</subject><ispartof>Journal of statistical mechanics, 2023-11, Vol.2023 (11), p.114004-114004</ispartof><rights>2023 The Author(s). Published on behalf of SISSA Medialab srl by IOP Publishing Ltd</rights><rights>2023 The Author(s). Published on behalf of SISSA Medialab srl by IOP Publishing Ltd.</rights><rights>2023 The Author(s). Published on behalf of SISSA Medialab srl by IOP Publishing Ltd 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c387t-e9898140baa184d44d8be75658f4f5af6a0599e7a88bfa209420dc9a906a5fad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-5468/ad01b8/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,881,27903,27904,53824,53871</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38524253$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>J Dominé, Clémentine C</creatorcontrib><creatorcontrib>Braun, Lukas</creatorcontrib><creatorcontrib>Fitzgerald, James E</creatorcontrib><creatorcontrib>Saxe, Andrew M</creatorcontrib><title>Exact learning dynamics of deep linear networks with prior knowledge</title><title>Journal of statistical mechanics</title><addtitle>JSTAT</addtitle><addtitle>J. Stat. Mech</addtitle><description>Learning in deep neural networks is known to depend critically on the knowledge embedded in the initial network weights. However, few theoretical results have precisely linked prior knowledge to learning dynamics. Here we derive exact solutions to the dynamics of learning with rich prior knowledge in deep linear networks by generalising Fukumizu's matrix Riccati solution (Fukumizu 1998 1E-03). We obtain explicit expressions for the evolving network function, hidden representational similarity, and neural tangent kernel over training for a broad class of initialisations and tasks. The expressions reveal a class of task-independent initialisations that radically alter learning dynamics from slow non-linear dynamics to fast exponential trajectories while converging to a global optimum with identical representational similarity, dissociating learning trajectories from the structure of initial internal representations. We characterise how network weights dynamically align with task structure, rigorously justifying why previous solutions successfully described learning from small initial weights without incorporating their fine-scale structure. Finally, we discuss the implications of these findings for continual learning, reversal learning and learning of structured knowledge. Taken together, our results provide a mathematical toolkit for understanding the impact of prior knowledge on deep learning.</description><subject>deep learning</subject><subject>learning theory</subject><subject>machine learning</subject><subject>Machine Learning 2023</subject><issn>1742-5468</issn><issn>1742-5468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kL1PwzAQxS0EolDYmZBHBkqdxE7sCaFSPqRKLDBbl9hp3SZ2sFNK_3tStVRlYLrTvXfvTj-EriJyFxHOh1FG4wGjKR-CIlHOj9DZfnR80PfQeQhzQpKYUH6KeglnMY1ZcoYex99QtLjS4K2xU6zWFmpTBOxKrLRucGVsp2Gr25Xzi4BXpp3hxhvn8cK6VaXVVF-gkxKqoC93tY8-nsbvo5fB5O35dfQwGRQJz9qBFlzwiJIcIOJUUap4rjOWMl7SkkGZAmFC6Aw4z0uIiaAxUYUAQVJgJaikj-63uc0yr7UqtG09VLL7pga_lg6M_KtYM5NT9yUjIhhLSdIl3OwSvPtc6tDK2oRCVxVY7ZZBxoKzTDDSoeojsrUW3oXgdbm_ExG5oS83eOUGr9zS71auD__bL_zi7gy3W4NxjZy7pbcdrv_zfgDYlI-L</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>J Dominé, Clémentine C</creator><creator>Braun, Lukas</creator><creator>Fitzgerald, James E</creator><creator>Saxe, Andrew M</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20231101</creationdate><title>Exact learning dynamics of deep linear networks with prior knowledge</title><author>J Dominé, Clémentine C ; Braun, Lukas ; Fitzgerald, James E ; Saxe, Andrew M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-e9898140baa184d44d8be75658f4f5af6a0599e7a88bfa209420dc9a906a5fad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>deep learning</topic><topic>learning theory</topic><topic>machine learning</topic><topic>Machine Learning 2023</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>J Dominé, Clémentine C</creatorcontrib><creatorcontrib>Braun, Lukas</creatorcontrib><creatorcontrib>Fitzgerald, James E</creatorcontrib><creatorcontrib>Saxe, Andrew M</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of statistical mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>J Dominé, Clémentine C</au><au>Braun, Lukas</au><au>Fitzgerald, James E</au><au>Saxe, Andrew M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact learning dynamics of deep linear networks with prior knowledge</atitle><jtitle>Journal of statistical mechanics</jtitle><stitle>JSTAT</stitle><addtitle>J. Stat. Mech</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>2023</volume><issue>11</issue><spage>114004</spage><epage>114004</epage><pages>114004-114004</pages><issn>1742-5468</issn><eissn>1742-5468</eissn><abstract>Learning in deep neural networks is known to depend critically on the knowledge embedded in the initial network weights. However, few theoretical results have precisely linked prior knowledge to learning dynamics. Here we derive exact solutions to the dynamics of learning with rich prior knowledge in deep linear networks by generalising Fukumizu's matrix Riccati solution (Fukumizu 1998 1E-03). We obtain explicit expressions for the evolving network function, hidden representational similarity, and neural tangent kernel over training for a broad class of initialisations and tasks. The expressions reveal a class of task-independent initialisations that radically alter learning dynamics from slow non-linear dynamics to fast exponential trajectories while converging to a global optimum with identical representational similarity, dissociating learning trajectories from the structure of initial internal representations. We characterise how network weights dynamically align with task structure, rigorously justifying why previous solutions successfully described learning from small initial weights without incorporating their fine-scale structure. Finally, we discuss the implications of these findings for continual learning, reversal learning and learning of structured knowledge. Taken together, our results provide a mathematical toolkit for understanding the impact of prior knowledge on deep learning.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>38524253</pmid><doi>10.1088/1742-5468/ad01b8</doi><tpages>48</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5468
ispartof Journal of statistical mechanics, 2023-11, Vol.2023 (11), p.114004-114004
issn 1742-5468
1742-5468
language eng
recordid cdi_proquest_miscellaneous_2985795000
source HEAL-Link subscriptions: Institute of Physics (IOP) Journals; Institute of Physics Journals
subjects deep learning
learning theory
machine learning
Machine Learning 2023
title Exact learning dynamics of deep linear networks with prior knowledge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A42%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20learning%20dynamics%20of%20deep%20linear%20networks%20with%20prior%20knowledge&rft.jtitle=Journal%20of%20statistical%20mechanics&rft.au=J%20Domin%C3%A9,%20Cl%C3%A9mentine%20C&rft.date=2023-11-01&rft.volume=2023&rft.issue=11&rft.spage=114004&rft.epage=114004&rft.pages=114004-114004&rft.issn=1742-5468&rft.eissn=1742-5468&rft_id=info:doi/10.1088/1742-5468/ad01b8&rft_dat=%3Cproquest_cross%3E2985795000%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2985795000&rft_id=info:pmid/38524253&rfr_iscdi=true