Modulated wick heat pipe

In heat pipes, modulation of evaporator wick thickness provides extra cross-sectional area for enhanced axial capillary liquid flow and extra evaporation surface area, with only a moderate increase in wick superheat (conduction resistance). This modulated wick (periodic stacks and grooves over a thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2007-04, Vol.50 (7), p.1420-1434
Hauptverfasser: Hwang, G.S., Kaviany, M., Anderson, W.G., Zuo, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1434
container_issue 7
container_start_page 1420
container_title International journal of heat and mass transfer
container_volume 50
creator Hwang, G.S.
Kaviany, M.
Anderson, W.G.
Zuo, J.
description In heat pipes, modulation of evaporator wick thickness provides extra cross-sectional area for enhanced axial capillary liquid flow and extra evaporation surface area, with only a moderate increase in wick superheat (conduction resistance). This modulated wick (periodic stacks and grooves over a thin, uniform wick) is analyzed and optimized with a prescribed, empirical wick superheat limit. A thermal-hydraulic heat pipe figure of merit is developed and scaled with the uniform wick figure of merit to evaluate and optimize its enhancement. The optimal modulated wick for the circular and flat heat pipes is found in closed-form expressions for the viscous-flow regime (low permeability), while similar results are obtained numerically for the viscous-inertial flow regime (high permeability which is also gravity sensitive). The predictions are compared with the experimental result of a prototype (low permeability, titanium/water pipe with the optimal design) heat pipe which gives a scaled figure of merit of 2.2. Good agreement is found between the predicted and measured performance. The maximum enhancement is limited by the pipe inner radius (tapering of the stacks), the wick effective thermal conductivity, and the prescribed wick superheat limit.
doi_str_mv 10.1016/j.ijheatmasstransfer.2006.09.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29856327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931006005291</els_id><sourcerecordid>29856327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-78c30560ffe74e51af2819246cda82dced06273e12c44d1e942cc5499f3eb4c93</originalsourceid><addsrcrecordid>eNqNkDtPwzAUhS0EEqWwM3YBsSRcP5LYG6gqLxWxwGwZ51o4pE2wUxD_HketxMDCdHWlT9_ROYRcUMgp0PKyyX3zhmZYmRiHYNbRYcgZQJmDyoGqPTKhslIZo1LtkwkArTLFKRySoxib8QVRTsjpY1dvWjNgPfvy9n02Kme97_GYHDjTRjzZ3Sl5uVk8z--y5dPt_fx6mVkBfMgqaTkUJTiHlcCCGsckVUyUtjaS1RZrKFnFkTIrRE1RCWZtIZRyHF-FVXxKzrfePnQfG4yDXvlosW3NGrtN1EzJouRJMSVXW9CGLsaATvfBr0z41hT0OIlu9N9J9DiJBqXTJElxtssy0ZrWJcb6-OuRhZS04ol72HKYin_6ZInW4zqV8QHtoOvO_z_0B_vEgkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29856327</pqid></control><display><type>article</type><title>Modulated wick heat pipe</title><source>Elsevier ScienceDirect Journals</source><creator>Hwang, G.S. ; Kaviany, M. ; Anderson, W.G. ; Zuo, J.</creator><creatorcontrib>Hwang, G.S. ; Kaviany, M. ; Anderson, W.G. ; Zuo, J.</creatorcontrib><description>In heat pipes, modulation of evaporator wick thickness provides extra cross-sectional area for enhanced axial capillary liquid flow and extra evaporation surface area, with only a moderate increase in wick superheat (conduction resistance). This modulated wick (periodic stacks and grooves over a thin, uniform wick) is analyzed and optimized with a prescribed, empirical wick superheat limit. A thermal-hydraulic heat pipe figure of merit is developed and scaled with the uniform wick figure of merit to evaluate and optimize its enhancement. The optimal modulated wick for the circular and flat heat pipes is found in closed-form expressions for the viscous-flow regime (low permeability), while similar results are obtained numerically for the viscous-inertial flow regime (high permeability which is also gravity sensitive). The predictions are compared with the experimental result of a prototype (low permeability, titanium/water pipe with the optimal design) heat pipe which gives a scaled figure of merit of 2.2. Good agreement is found between the predicted and measured performance. The maximum enhancement is limited by the pipe inner radius (tapering of the stacks), the wick effective thermal conductivity, and the prescribed wick superheat limit.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2006.09.019</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Critical heat flux ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Figure of merit ; Heat pipe ; Heat pipes ; Modulated wick ; Optimal design ; Superheat</subject><ispartof>International journal of heat and mass transfer, 2007-04, Vol.50 (7), p.1420-1434</ispartof><rights>2006 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-78c30560ffe74e51af2819246cda82dced06273e12c44d1e942cc5499f3eb4c93</citedby><cites>FETCH-LOGICAL-c403t-78c30560ffe74e51af2819246cda82dced06273e12c44d1e942cc5499f3eb4c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931006005291$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18588173$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hwang, G.S.</creatorcontrib><creatorcontrib>Kaviany, M.</creatorcontrib><creatorcontrib>Anderson, W.G.</creatorcontrib><creatorcontrib>Zuo, J.</creatorcontrib><title>Modulated wick heat pipe</title><title>International journal of heat and mass transfer</title><description>In heat pipes, modulation of evaporator wick thickness provides extra cross-sectional area for enhanced axial capillary liquid flow and extra evaporation surface area, with only a moderate increase in wick superheat (conduction resistance). This modulated wick (periodic stacks and grooves over a thin, uniform wick) is analyzed and optimized with a prescribed, empirical wick superheat limit. A thermal-hydraulic heat pipe figure of merit is developed and scaled with the uniform wick figure of merit to evaluate and optimize its enhancement. The optimal modulated wick for the circular and flat heat pipes is found in closed-form expressions for the viscous-flow regime (low permeability), while similar results are obtained numerically for the viscous-inertial flow regime (high permeability which is also gravity sensitive). The predictions are compared with the experimental result of a prototype (low permeability, titanium/water pipe with the optimal design) heat pipe which gives a scaled figure of merit of 2.2. Good agreement is found between the predicted and measured performance. The maximum enhancement is limited by the pipe inner radius (tapering of the stacks), the wick effective thermal conductivity, and the prescribed wick superheat limit.</description><subject>Applied sciences</subject><subject>Critical heat flux</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Figure of merit</subject><subject>Heat pipe</subject><subject>Heat pipes</subject><subject>Modulated wick</subject><subject>Optimal design</subject><subject>Superheat</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkDtPwzAUhS0EEqWwM3YBsSRcP5LYG6gqLxWxwGwZ51o4pE2wUxD_HketxMDCdHWlT9_ROYRcUMgp0PKyyX3zhmZYmRiHYNbRYcgZQJmDyoGqPTKhslIZo1LtkwkArTLFKRySoxib8QVRTsjpY1dvWjNgPfvy9n02Kme97_GYHDjTRjzZ3Sl5uVk8z--y5dPt_fx6mVkBfMgqaTkUJTiHlcCCGsckVUyUtjaS1RZrKFnFkTIrRE1RCWZtIZRyHF-FVXxKzrfePnQfG4yDXvlosW3NGrtN1EzJouRJMSVXW9CGLsaATvfBr0z41hT0OIlu9N9J9DiJBqXTJElxtssy0ZrWJcb6-OuRhZS04ol72HKYin_6ZInW4zqV8QHtoOvO_z_0B_vEgkQ</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Hwang, G.S.</creator><creator>Kaviany, M.</creator><creator>Anderson, W.G.</creator><creator>Zuo, J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20070401</creationdate><title>Modulated wick heat pipe</title><author>Hwang, G.S. ; Kaviany, M. ; Anderson, W.G. ; Zuo, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-78c30560ffe74e51af2819246cda82dced06273e12c44d1e942cc5499f3eb4c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Critical heat flux</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Figure of merit</topic><topic>Heat pipe</topic><topic>Heat pipes</topic><topic>Modulated wick</topic><topic>Optimal design</topic><topic>Superheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, G.S.</creatorcontrib><creatorcontrib>Kaviany, M.</creatorcontrib><creatorcontrib>Anderson, W.G.</creatorcontrib><creatorcontrib>Zuo, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, G.S.</au><au>Kaviany, M.</au><au>Anderson, W.G.</au><au>Zuo, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulated wick heat pipe</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>50</volume><issue>7</issue><spage>1420</spage><epage>1434</epage><pages>1420-1434</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>In heat pipes, modulation of evaporator wick thickness provides extra cross-sectional area for enhanced axial capillary liquid flow and extra evaporation surface area, with only a moderate increase in wick superheat (conduction resistance). This modulated wick (periodic stacks and grooves over a thin, uniform wick) is analyzed and optimized with a prescribed, empirical wick superheat limit. A thermal-hydraulic heat pipe figure of merit is developed and scaled with the uniform wick figure of merit to evaluate and optimize its enhancement. The optimal modulated wick for the circular and flat heat pipes is found in closed-form expressions for the viscous-flow regime (low permeability), while similar results are obtained numerically for the viscous-inertial flow regime (high permeability which is also gravity sensitive). The predictions are compared with the experimental result of a prototype (low permeability, titanium/water pipe with the optimal design) heat pipe which gives a scaled figure of merit of 2.2. Good agreement is found between the predicted and measured performance. The maximum enhancement is limited by the pipe inner radius (tapering of the stacks), the wick effective thermal conductivity, and the prescribed wick superheat limit.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2006.09.019</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2007-04, Vol.50 (7), p.1420-1434
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_29856327
source Elsevier ScienceDirect Journals
subjects Applied sciences
Critical heat flux
Devices using thermal energy
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Figure of merit
Heat pipe
Heat pipes
Modulated wick
Optimal design
Superheat
title Modulated wick heat pipe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T12%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulated%20wick%20heat%20pipe&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Hwang,%20G.S.&rft.date=2007-04-01&rft.volume=50&rft.issue=7&rft.spage=1420&rft.epage=1434&rft.pages=1420-1434&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2006.09.019&rft_dat=%3Cproquest_cross%3E29856327%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29856327&rft_id=info:pmid/&rft_els_id=S0017931006005291&rfr_iscdi=true