Creep resistance of tin-based lead-free solder alloys

This paper reports on the microstructure-creep property relationship of three precipitation-strengthened tin (Sn)-based lead (Pb)-free solder alloys (Sn-0.7Cu, Sn-3.5Ag, and Sn-3.8Ag-0.7Cu) in bulk samples, together with Sn-37Pb as the alloy for comparison at temperatures of 303 K, 348 K, and 393 K....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2005-11, Vol.34 (11), p.1373-1377
Hauptverfasser: HUANG, M. L, WU, C. M. L, WANG, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1377
container_issue 11
container_start_page 1373
container_title Journal of electronic materials
container_volume 34
creator HUANG, M. L
WU, C. M. L
WANG, L
description This paper reports on the microstructure-creep property relationship of three precipitation-strengthened tin (Sn)-based lead (Pb)-free solder alloys (Sn-0.7Cu, Sn-3.5Ag, and Sn-3.8Ag-0.7Cu) in bulk samples, together with Sn-37Pb as the alloy for comparison at temperatures of 303 K, 348 K, and 393 K. The creep resistance of these three Sn-based Pb-free solders increases, i.e., the steady-state creep rates decrease, with increasing volume fraction of precipitate phases for the Pb-free solder alloys. Their apparent stress exponents (n^sub a^ ~ 7.3-17), which are all higher than that of pure Sn, attain higher values with increasing volume fraction of precipitate phases at constant temperature, and with decreasing temperature for the same solder alloy. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s11664-005-0193-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29853977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29853977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-3cdf843accb5e2bda052d75e23c11f5ddc6678b018393f0725316d999bf35f5f3</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMoWKs_wN0g6C6amzuZJEspvqDgRsFdyOQBU9JOTaYL_70pLQiu7ll853D5CLkGdg-MyYcC0HUtZUxQBhopnpAZiBYpqO7rlMwYdkAFR3FOLkpZMQYCFMyIWOQQtk0OZSiT3bjQjLGZhg3tbQm-ScF6GivSlDH5kBub0vhTLslZtKmEq-Odk8_np4_FK12-v7wtHpfUodYTReejatE614vAe2-Z4F7WiA4gCu9d10nVM1CoMTLJBULntdZ9RBFFxDm5O-xu8_i9C2Uy66G4kJLdhHFXDNdKoJaygjf_wNW4y5v6m-Gs1Vx1eg_BAXJ5LCWHaLZ5WNv8Y4CZvUVzsGiqRbO3aLB2bo_DtjibYq6OhvJXlBylqp5_ASjCcHs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204928697</pqid></control><display><type>article</type><title>Creep resistance of tin-based lead-free solder alloys</title><source>SpringerNature Journals</source><creator>HUANG, M. L ; WU, C. M. L ; WANG, L</creator><creatorcontrib>HUANG, M. L ; WU, C. M. L ; WANG, L</creatorcontrib><description>This paper reports on the microstructure-creep property relationship of three precipitation-strengthened tin (Sn)-based lead (Pb)-free solder alloys (Sn-0.7Cu, Sn-3.5Ag, and Sn-3.8Ag-0.7Cu) in bulk samples, together with Sn-37Pb as the alloy for comparison at temperatures of 303 K, 348 K, and 393 K. The creep resistance of these three Sn-based Pb-free solders increases, i.e., the steady-state creep rates decrease, with increasing volume fraction of precipitate phases for the Pb-free solder alloys. Their apparent stress exponents (n^sub a^ ~ 7.3-17), which are all higher than that of pure Sn, attain higher values with increasing volume fraction of precipitate phases at constant temperature, and with decreasing temperature for the same solder alloy. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-005-0193-3</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>New York, NY: Institute of Electrical and Electronics Engineers</publisher><subject>Applied sciences ; Condensed matter: structure, mechanical and thermal properties ; Creep ; Electronics ; Exact sciences and technology ; Lead free solders ; Materials ; Materials science ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Microelectronics ; Microstructure ; Physics ; Temperature ; Tin</subject><ispartof>Journal of electronic materials, 2005-11, Vol.34 (11), p.1373-1377</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Minerals, Metals &amp; Materials Society Nov 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-3cdf843accb5e2bda052d75e23c11f5ddc6678b018393f0725316d999bf35f5f3</citedby><cites>FETCH-LOGICAL-c399t-3cdf843accb5e2bda052d75e23c11f5ddc6678b018393f0725316d999bf35f5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17237854$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HUANG, M. L</creatorcontrib><creatorcontrib>WU, C. M. L</creatorcontrib><creatorcontrib>WANG, L</creatorcontrib><title>Creep resistance of tin-based lead-free solder alloys</title><title>Journal of electronic materials</title><description>This paper reports on the microstructure-creep property relationship of three precipitation-strengthened tin (Sn)-based lead (Pb)-free solder alloys (Sn-0.7Cu, Sn-3.5Ag, and Sn-3.8Ag-0.7Cu) in bulk samples, together with Sn-37Pb as the alloy for comparison at temperatures of 303 K, 348 K, and 393 K. The creep resistance of these three Sn-based Pb-free solders increases, i.e., the steady-state creep rates decrease, with increasing volume fraction of precipitate phases for the Pb-free solder alloys. Their apparent stress exponents (n^sub a^ ~ 7.3-17), which are all higher than that of pure Sn, attain higher values with increasing volume fraction of precipitate phases at constant temperature, and with decreasing temperature for the same solder alloy. [PUBLICATION ABSTRACT]</description><subject>Applied sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Creep</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Lead free solders</subject><subject>Materials</subject><subject>Materials science</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Microelectronics</subject><subject>Microstructure</subject><subject>Physics</subject><subject>Temperature</subject><subject>Tin</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkEtLAzEUhYMoWKs_wN0g6C6amzuZJEspvqDgRsFdyOQBU9JOTaYL_70pLQiu7ll853D5CLkGdg-MyYcC0HUtZUxQBhopnpAZiBYpqO7rlMwYdkAFR3FOLkpZMQYCFMyIWOQQtk0OZSiT3bjQjLGZhg3tbQm-ScF6GivSlDH5kBub0vhTLslZtKmEq-Odk8_np4_FK12-v7wtHpfUodYTReejatE614vAe2-Z4F7WiA4gCu9d10nVM1CoMTLJBULntdZ9RBFFxDm5O-xu8_i9C2Uy66G4kJLdhHFXDNdKoJaygjf_wNW4y5v6m-Gs1Vx1eg_BAXJ5LCWHaLZ5WNv8Y4CZvUVzsGiqRbO3aLB2bo_DtjibYq6OhvJXlBylqp5_ASjCcHs</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>HUANG, M. L</creator><creator>WU, C. M. L</creator><creator>WANG, L</creator><general>Institute of Electrical and Electronics Engineers</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20051101</creationdate><title>Creep resistance of tin-based lead-free solder alloys</title><author>HUANG, M. L ; WU, C. M. L ; WANG, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-3cdf843accb5e2bda052d75e23c11f5ddc6678b018393f0725316d999bf35f5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Creep</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Lead free solders</topic><topic>Materials</topic><topic>Materials science</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Microelectronics</topic><topic>Microstructure</topic><topic>Physics</topic><topic>Temperature</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HUANG, M. L</creatorcontrib><creatorcontrib>WU, C. M. L</creatorcontrib><creatorcontrib>WANG, L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HUANG, M. L</au><au>WU, C. M. L</au><au>WANG, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creep resistance of tin-based lead-free solder alloys</atitle><jtitle>Journal of electronic materials</jtitle><date>2005-11-01</date><risdate>2005</risdate><volume>34</volume><issue>11</issue><spage>1373</spage><epage>1377</epage><pages>1373-1377</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>This paper reports on the microstructure-creep property relationship of three precipitation-strengthened tin (Sn)-based lead (Pb)-free solder alloys (Sn-0.7Cu, Sn-3.5Ag, and Sn-3.8Ag-0.7Cu) in bulk samples, together with Sn-37Pb as the alloy for comparison at temperatures of 303 K, 348 K, and 393 K. The creep resistance of these three Sn-based Pb-free solders increases, i.e., the steady-state creep rates decrease, with increasing volume fraction of precipitate phases for the Pb-free solder alloys. Their apparent stress exponents (n^sub a^ ~ 7.3-17), which are all higher than that of pure Sn, attain higher values with increasing volume fraction of precipitate phases at constant temperature, and with decreasing temperature for the same solder alloy. [PUBLICATION ABSTRACT]</abstract><cop>New York, NY</cop><pub>Institute of Electrical and Electronics Engineers</pub><doi>10.1007/s11664-005-0193-3</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2005-11, Vol.34 (11), p.1373-1377
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_miscellaneous_29853977
source SpringerNature Journals
subjects Applied sciences
Condensed matter: structure, mechanical and thermal properties
Creep
Electronics
Exact sciences and technology
Lead free solders
Materials
Materials science
Mechanical and acoustical properties of condensed matter
Mechanical properties of solids
Microelectronics
Microstructure
Physics
Temperature
Tin
title Creep resistance of tin-based lead-free solder alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A24%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creep%20resistance%20of%20tin-based%20lead-free%20solder%20alloys&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=HUANG,%20M.%20L&rft.date=2005-11-01&rft.volume=34&rft.issue=11&rft.spage=1373&rft.epage=1377&rft.pages=1373-1377&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-005-0193-3&rft_dat=%3Cproquest_cross%3E29853977%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204928697&rft_id=info:pmid/&rfr_iscdi=true