Magnetic response of microbially synthesized transition metal- and lanthanide-substituted nano-sized magnetites

The magnetic susceptibility ( κ RT) and saturation magnetization ( M S) of microbially synthesized magnetites were systematically examined. Transition metal (Cr, Mn, Co, Ni and Zn)- and lanthanide (Nd, Gd, Tb, Ho and Er)-substituted magnetites were microbially synthesized by the incubation of transi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Magnetism and Magnetic Materials 2007-06, Vol.313 (2), p.283-292
Hauptverfasser: Moon, Ji-Won, Yeary, Lucas W., Rondinone, Adam J., Rawn, Claudia J., Kirkham, Melanie J., Roh, Yul, Love, Lonnie J., Phelps, Tommy J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 292
container_issue 2
container_start_page 283
container_title Journal of Magnetism and Magnetic Materials
container_volume 313
creator Moon, Ji-Won
Yeary, Lucas W.
Rondinone, Adam J.
Rawn, Claudia J.
Kirkham, Melanie J.
Roh, Yul
Love, Lonnie J.
Phelps, Tommy J.
description The magnetic susceptibility ( κ RT) and saturation magnetization ( M S) of microbially synthesized magnetites were systematically examined. Transition metal (Cr, Mn, Co, Ni and Zn)- and lanthanide (Nd, Gd, Tb, Ho and Er)-substituted magnetites were microbially synthesized by the incubation of transition metal (TM)- and lanthanide (L)-mixed magnetite precursors with either thermophilic (TOR-39) or psychrotolerant (PV-4) metal-reducing bacteria (MRB). Zinc incorporated congruently into both the precursor and substituted magnetite, while Ni and Er predominantly did not. Microbially synthesized Mn- and Zn-substituted magnetites had higher κ RT than pure biomagnetite depending on bacterial species and they exhibited a maximum κ RT at 0.2 cationic mole fraction (CMF). Other TMs’ substitution linearly decreased the κ RT with increasing substitution amount. Based on the M S values of TM- and L-substituted magnetite at 0.1 and 0.02 CMF, respectively, Zn (90.7 emu/g for TOR-39 and 93.2 emu/g for PV-4)- and Mn (88.3 emu/g by PV-4)-substituted magnetite exhibited higher M S than standard chemical magnetite (84.7 emu/g) or pure biomagnetite without metal substitution (76.6 emu/g for TOR-39 and 80.3 emu/g for PV-4). Lanthanides tended to decrease M S, with Gd- and Ho-substituted magnetites having the highest magnetization. The higher magnetization of microbially synthesized TM-substituted magnetites by the psychrotroph, PV-4 may be explained by the magnetite formation taking place at low temperatures slowing mechanics, which may alter the magnetic properties compared to the thermophile, through suppression of the random distribution of substituted cations.
doi_str_mv 10.1016/j.jmmm.2007.01.011
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_29849313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885307000170</els_id><sourcerecordid>29849313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-225bd370a2bdf822466df665503781fdad20fda729f07f4d1f0d62bb33a8b7693</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhXMAidLyBziFA9yyjO1s4pW4oIoCUisucLYce0y9SuzF40Vafj0TpRI3pJF9-d7MmzdN81rAToAY3h93x2VZdhJg3IHgEs-aK1DQd1rv1YvmJdERAESvh6smP9ifCWt0bUE65UTY5tAu0ZU8RTvPl5YuqT4ixT_o21psolhjTu2C1c5da5NvZ8uETdFjR-eJaqznynCyKXebbtmGVKSb5nmwM-Grp_-6-XH36fvtl-7-2-evtx_vO6f0WDsp95NXI1g5-aCl7IfBh2HY70GNWgRvvQR-R3kIMIbeiwB-kNOklNXTOBzUdfNm65vZjyHHs92jyymhq-ageHnFzLuNOZX864xUzRLJ4cz7YD6TkQfdM7qCcgM5FaKCwZxKXGy5GAFmzdwczZq5WTM3ILgEi94-dbfk7Bw4Ohfpn1KPIPkIzH3YOOQ4fkcsq1tMDn0sq1mf4__G_AWbwpwg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29849313</pqid></control><display><type>article</type><title>Magnetic response of microbially synthesized transition metal- and lanthanide-substituted nano-sized magnetites</title><source>Access via ScienceDirect (Elsevier)</source><creator>Moon, Ji-Won ; Yeary, Lucas W. ; Rondinone, Adam J. ; Rawn, Claudia J. ; Kirkham, Melanie J. ; Roh, Yul ; Love, Lonnie J. ; Phelps, Tommy J.</creator><creatorcontrib>Moon, Ji-Won ; Yeary, Lucas W. ; Rondinone, Adam J. ; Rawn, Claudia J. ; Kirkham, Melanie J. ; Roh, Yul ; Love, Lonnie J. ; Phelps, Tommy J. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The magnetic susceptibility ( κ RT) and saturation magnetization ( M S) of microbially synthesized magnetites were systematically examined. Transition metal (Cr, Mn, Co, Ni and Zn)- and lanthanide (Nd, Gd, Tb, Ho and Er)-substituted magnetites were microbially synthesized by the incubation of transition metal (TM)- and lanthanide (L)-mixed magnetite precursors with either thermophilic (TOR-39) or psychrotolerant (PV-4) metal-reducing bacteria (MRB). Zinc incorporated congruently into both the precursor and substituted magnetite, while Ni and Er predominantly did not. Microbially synthesized Mn- and Zn-substituted magnetites had higher κ RT than pure biomagnetite depending on bacterial species and they exhibited a maximum κ RT at 0.2 cationic mole fraction (CMF). Other TMs’ substitution linearly decreased the κ RT with increasing substitution amount. Based on the M S values of TM- and L-substituted magnetite at 0.1 and 0.02 CMF, respectively, Zn (90.7 emu/g for TOR-39 and 93.2 emu/g for PV-4)- and Mn (88.3 emu/g by PV-4)-substituted magnetite exhibited higher M S than standard chemical magnetite (84.7 emu/g) or pure biomagnetite without metal substitution (76.6 emu/g for TOR-39 and 80.3 emu/g for PV-4). Lanthanides tended to decrease M S, with Gd- and Ho-substituted magnetites having the highest magnetization. The higher magnetization of microbially synthesized TM-substituted magnetites by the psychrotroph, PV-4 may be explained by the magnetite formation taking place at low temperatures slowing mechanics, which may alter the magnetic properties compared to the thermophile, through suppression of the random distribution of substituted cations.</description><identifier>ISSN: 0304-8853</identifier><identifier>DOI: 10.1016/j.jmmm.2007.01.011</identifier><identifier>CODEN: JMMMDC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Domain effects, magnetization curves, and hysteresis ; Exact sciences and technology ; Lanthanide ; Lanthanides ; Magnetic properties and materials ; Magnetism ; Magnetite ; Magnetization curves, magnetization reversal, hysteresis, barkhausen and related effects ; Microbial synthesis ; Physics ; Transition metal ; Transition metals</subject><ispartof>Journal of Magnetism and Magnetic Materials, 2007-06, Vol.313 (2), p.283-292</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-225bd370a2bdf822466df665503781fdad20fda729f07f4d1f0d62bb33a8b7693</citedby><cites>FETCH-LOGICAL-c387t-225bd370a2bdf822466df665503781fdad20fda729f07f4d1f0d62bb33a8b7693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmmm.2007.01.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18702014$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/931483$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Moon, Ji-Won</creatorcontrib><creatorcontrib>Yeary, Lucas W.</creatorcontrib><creatorcontrib>Rondinone, Adam J.</creatorcontrib><creatorcontrib>Rawn, Claudia J.</creatorcontrib><creatorcontrib>Kirkham, Melanie J.</creatorcontrib><creatorcontrib>Roh, Yul</creatorcontrib><creatorcontrib>Love, Lonnie J.</creatorcontrib><creatorcontrib>Phelps, Tommy J.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Magnetic response of microbially synthesized transition metal- and lanthanide-substituted nano-sized magnetites</title><title>Journal of Magnetism and Magnetic Materials</title><description>The magnetic susceptibility ( κ RT) and saturation magnetization ( M S) of microbially synthesized magnetites were systematically examined. Transition metal (Cr, Mn, Co, Ni and Zn)- and lanthanide (Nd, Gd, Tb, Ho and Er)-substituted magnetites were microbially synthesized by the incubation of transition metal (TM)- and lanthanide (L)-mixed magnetite precursors with either thermophilic (TOR-39) or psychrotolerant (PV-4) metal-reducing bacteria (MRB). Zinc incorporated congruently into both the precursor and substituted magnetite, while Ni and Er predominantly did not. Microbially synthesized Mn- and Zn-substituted magnetites had higher κ RT than pure biomagnetite depending on bacterial species and they exhibited a maximum κ RT at 0.2 cationic mole fraction (CMF). Other TMs’ substitution linearly decreased the κ RT with increasing substitution amount. Based on the M S values of TM- and L-substituted magnetite at 0.1 and 0.02 CMF, respectively, Zn (90.7 emu/g for TOR-39 and 93.2 emu/g for PV-4)- and Mn (88.3 emu/g by PV-4)-substituted magnetite exhibited higher M S than standard chemical magnetite (84.7 emu/g) or pure biomagnetite without metal substitution (76.6 emu/g for TOR-39 and 80.3 emu/g for PV-4). Lanthanides tended to decrease M S, with Gd- and Ho-substituted magnetites having the highest magnetization. The higher magnetization of microbially synthesized TM-substituted magnetites by the psychrotroph, PV-4 may be explained by the magnetite formation taking place at low temperatures slowing mechanics, which may alter the magnetic properties compared to the thermophile, through suppression of the random distribution of substituted cations.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Domain effects, magnetization curves, and hysteresis</subject><subject>Exact sciences and technology</subject><subject>Lanthanide</subject><subject>Lanthanides</subject><subject>Magnetic properties and materials</subject><subject>Magnetism</subject><subject>Magnetite</subject><subject>Magnetization curves, magnetization reversal, hysteresis, barkhausen and related effects</subject><subject>Microbial synthesis</subject><subject>Physics</subject><subject>Transition metal</subject><subject>Transition metals</subject><issn>0304-8853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhXMAidLyBziFA9yyjO1s4pW4oIoCUisucLYce0y9SuzF40Vafj0TpRI3pJF9-d7MmzdN81rAToAY3h93x2VZdhJg3IHgEs-aK1DQd1rv1YvmJdERAESvh6smP9ifCWt0bUE65UTY5tAu0ZU8RTvPl5YuqT4ixT_o21psolhjTu2C1c5da5NvZ8uETdFjR-eJaqznynCyKXebbtmGVKSb5nmwM-Grp_-6-XH36fvtl-7-2-evtx_vO6f0WDsp95NXI1g5-aCl7IfBh2HY70GNWgRvvQR-R3kIMIbeiwB-kNOklNXTOBzUdfNm65vZjyHHs92jyymhq-ageHnFzLuNOZX864xUzRLJ4cz7YD6TkQfdM7qCcgM5FaKCwZxKXGy5GAFmzdwczZq5WTM3ILgEi94-dbfk7Bw4Ohfpn1KPIPkIzH3YOOQ4fkcsq1tMDn0sq1mf4__G_AWbwpwg</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Moon, Ji-Won</creator><creator>Yeary, Lucas W.</creator><creator>Rondinone, Adam J.</creator><creator>Rawn, Claudia J.</creator><creator>Kirkham, Melanie J.</creator><creator>Roh, Yul</creator><creator>Love, Lonnie J.</creator><creator>Phelps, Tommy J.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20070601</creationdate><title>Magnetic response of microbially synthesized transition metal- and lanthanide-substituted nano-sized magnetites</title><author>Moon, Ji-Won ; Yeary, Lucas W. ; Rondinone, Adam J. ; Rawn, Claudia J. ; Kirkham, Melanie J. ; Roh, Yul ; Love, Lonnie J. ; Phelps, Tommy J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-225bd370a2bdf822466df665503781fdad20fda729f07f4d1f0d62bb33a8b7693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Domain effects, magnetization curves, and hysteresis</topic><topic>Exact sciences and technology</topic><topic>Lanthanide</topic><topic>Lanthanides</topic><topic>Magnetic properties and materials</topic><topic>Magnetism</topic><topic>Magnetite</topic><topic>Magnetization curves, magnetization reversal, hysteresis, barkhausen and related effects</topic><topic>Microbial synthesis</topic><topic>Physics</topic><topic>Transition metal</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moon, Ji-Won</creatorcontrib><creatorcontrib>Yeary, Lucas W.</creatorcontrib><creatorcontrib>Rondinone, Adam J.</creatorcontrib><creatorcontrib>Rawn, Claudia J.</creatorcontrib><creatorcontrib>Kirkham, Melanie J.</creatorcontrib><creatorcontrib>Roh, Yul</creatorcontrib><creatorcontrib>Love, Lonnie J.</creatorcontrib><creatorcontrib>Phelps, Tommy J.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of Magnetism and Magnetic Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, Ji-Won</au><au>Yeary, Lucas W.</au><au>Rondinone, Adam J.</au><au>Rawn, Claudia J.</au><au>Kirkham, Melanie J.</au><au>Roh, Yul</au><au>Love, Lonnie J.</au><au>Phelps, Tommy J.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic response of microbially synthesized transition metal- and lanthanide-substituted nano-sized magnetites</atitle><jtitle>Journal of Magnetism and Magnetic Materials</jtitle><date>2007-06-01</date><risdate>2007</risdate><volume>313</volume><issue>2</issue><spage>283</spage><epage>292</epage><pages>283-292</pages><issn>0304-8853</issn><coden>JMMMDC</coden><abstract>The magnetic susceptibility ( κ RT) and saturation magnetization ( M S) of microbially synthesized magnetites were systematically examined. Transition metal (Cr, Mn, Co, Ni and Zn)- and lanthanide (Nd, Gd, Tb, Ho and Er)-substituted magnetites were microbially synthesized by the incubation of transition metal (TM)- and lanthanide (L)-mixed magnetite precursors with either thermophilic (TOR-39) or psychrotolerant (PV-4) metal-reducing bacteria (MRB). Zinc incorporated congruently into both the precursor and substituted magnetite, while Ni and Er predominantly did not. Microbially synthesized Mn- and Zn-substituted magnetites had higher κ RT than pure biomagnetite depending on bacterial species and they exhibited a maximum κ RT at 0.2 cationic mole fraction (CMF). Other TMs’ substitution linearly decreased the κ RT with increasing substitution amount. Based on the M S values of TM- and L-substituted magnetite at 0.1 and 0.02 CMF, respectively, Zn (90.7 emu/g for TOR-39 and 93.2 emu/g for PV-4)- and Mn (88.3 emu/g by PV-4)-substituted magnetite exhibited higher M S than standard chemical magnetite (84.7 emu/g) or pure biomagnetite without metal substitution (76.6 emu/g for TOR-39 and 80.3 emu/g for PV-4). Lanthanides tended to decrease M S, with Gd- and Ho-substituted magnetites having the highest magnetization. The higher magnetization of microbially synthesized TM-substituted magnetites by the psychrotroph, PV-4 may be explained by the magnetite formation taking place at low temperatures slowing mechanics, which may alter the magnetic properties compared to the thermophile, through suppression of the random distribution of substituted cations.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2007.01.011</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-8853
ispartof Journal of Magnetism and Magnetic Materials, 2007-06, Vol.313 (2), p.283-292
issn 0304-8853
language eng
recordid cdi_proquest_miscellaneous_29849313
source Access via ScienceDirect (Elsevier)
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Domain effects, magnetization curves, and hysteresis
Exact sciences and technology
Lanthanide
Lanthanides
Magnetic properties and materials
Magnetism
Magnetite
Magnetization curves, magnetization reversal, hysteresis, barkhausen and related effects
Microbial synthesis
Physics
Transition metal
Transition metals
title Magnetic response of microbially synthesized transition metal- and lanthanide-substituted nano-sized magnetites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T07%3A20%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20response%20of%20microbially%20synthesized%20transition%20metal-%20and%20lanthanide-substituted%20nano-sized%20magnetites&rft.jtitle=Journal%20of%20Magnetism%20and%20Magnetic%20Materials&rft.au=Moon,%20Ji-Won&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2007-06-01&rft.volume=313&rft.issue=2&rft.spage=283&rft.epage=292&rft.pages=283-292&rft.issn=0304-8853&rft.coden=JMMMDC&rft_id=info:doi/10.1016/j.jmmm.2007.01.011&rft_dat=%3Cproquest_osti_%3E29849313%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29849313&rft_id=info:pmid/&rft_els_id=S0304885307000170&rfr_iscdi=true