Magnetic response of microbially synthesized transition metal- and lanthanide-substituted nano-sized magnetites
The magnetic susceptibility ( κ RT) and saturation magnetization ( M S) of microbially synthesized magnetites were systematically examined. Transition metal (Cr, Mn, Co, Ni and Zn)- and lanthanide (Nd, Gd, Tb, Ho and Er)-substituted magnetites were microbially synthesized by the incubation of transi...
Gespeichert in:
Veröffentlicht in: | Journal of Magnetism and Magnetic Materials 2007-06, Vol.313 (2), p.283-292 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 292 |
---|---|
container_issue | 2 |
container_start_page | 283 |
container_title | Journal of Magnetism and Magnetic Materials |
container_volume | 313 |
creator | Moon, Ji-Won Yeary, Lucas W. Rondinone, Adam J. Rawn, Claudia J. Kirkham, Melanie J. Roh, Yul Love, Lonnie J. Phelps, Tommy J. |
description | The magnetic susceptibility (
κ
RT) and saturation magnetization (
M
S) of microbially synthesized magnetites were systematically examined. Transition metal (Cr, Mn, Co, Ni and Zn)- and lanthanide (Nd, Gd, Tb, Ho and Er)-substituted magnetites were microbially synthesized by the incubation of transition metal (TM)- and lanthanide (L)-mixed magnetite precursors with either thermophilic (TOR-39) or psychrotolerant (PV-4) metal-reducing bacteria (MRB). Zinc incorporated congruently into both the precursor and substituted magnetite, while Ni and Er predominantly did not. Microbially synthesized Mn- and Zn-substituted magnetites had higher
κ
RT than pure biomagnetite depending on bacterial species and they exhibited a maximum
κ
RT at 0.2 cationic mole fraction (CMF). Other TMs’ substitution linearly decreased the
κ
RT with increasing substitution amount. Based on the
M
S values of TM- and L-substituted magnetite at 0.1 and 0.02 CMF, respectively, Zn (90.7
emu/g for TOR-39 and 93.2
emu/g for PV-4)- and Mn (88.3
emu/g by PV-4)-substituted magnetite exhibited higher
M
S than standard chemical magnetite (84.7
emu/g) or pure biomagnetite without metal substitution (76.6
emu/g for TOR-39 and 80.3
emu/g for PV-4). Lanthanides tended to decrease
M
S, with Gd- and Ho-substituted magnetites having the highest magnetization. The higher magnetization of microbially synthesized TM-substituted magnetites by the psychrotroph, PV-4 may be explained by the magnetite formation taking place at low temperatures slowing mechanics, which may alter the magnetic properties compared to the thermophile, through suppression of the random distribution of substituted cations. |
doi_str_mv | 10.1016/j.jmmm.2007.01.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_29849313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885307000170</els_id><sourcerecordid>29849313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-225bd370a2bdf822466df665503781fdad20fda729f07f4d1f0d62bb33a8b7693</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhXMAidLyBziFA9yyjO1s4pW4oIoCUisucLYce0y9SuzF40Vafj0TpRI3pJF9-d7MmzdN81rAToAY3h93x2VZdhJg3IHgEs-aK1DQd1rv1YvmJdERAESvh6smP9ifCWt0bUE65UTY5tAu0ZU8RTvPl5YuqT4ixT_o21psolhjTu2C1c5da5NvZ8uETdFjR-eJaqznynCyKXebbtmGVKSb5nmwM-Grp_-6-XH36fvtl-7-2-evtx_vO6f0WDsp95NXI1g5-aCl7IfBh2HY70GNWgRvvQR-R3kIMIbeiwB-kNOklNXTOBzUdfNm65vZjyHHs92jyymhq-ageHnFzLuNOZX864xUzRLJ4cz7YD6TkQfdM7qCcgM5FaKCwZxKXGy5GAFmzdwczZq5WTM3ILgEi94-dbfk7Bw4Ohfpn1KPIPkIzH3YOOQ4fkcsq1tMDn0sq1mf4__G_AWbwpwg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29849313</pqid></control><display><type>article</type><title>Magnetic response of microbially synthesized transition metal- and lanthanide-substituted nano-sized magnetites</title><source>Access via ScienceDirect (Elsevier)</source><creator>Moon, Ji-Won ; Yeary, Lucas W. ; Rondinone, Adam J. ; Rawn, Claudia J. ; Kirkham, Melanie J. ; Roh, Yul ; Love, Lonnie J. ; Phelps, Tommy J.</creator><creatorcontrib>Moon, Ji-Won ; Yeary, Lucas W. ; Rondinone, Adam J. ; Rawn, Claudia J. ; Kirkham, Melanie J. ; Roh, Yul ; Love, Lonnie J. ; Phelps, Tommy J. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The magnetic susceptibility (
κ
RT) and saturation magnetization (
M
S) of microbially synthesized magnetites were systematically examined. Transition metal (Cr, Mn, Co, Ni and Zn)- and lanthanide (Nd, Gd, Tb, Ho and Er)-substituted magnetites were microbially synthesized by the incubation of transition metal (TM)- and lanthanide (L)-mixed magnetite precursors with either thermophilic (TOR-39) or psychrotolerant (PV-4) metal-reducing bacteria (MRB). Zinc incorporated congruently into both the precursor and substituted magnetite, while Ni and Er predominantly did not. Microbially synthesized Mn- and Zn-substituted magnetites had higher
κ
RT than pure biomagnetite depending on bacterial species and they exhibited a maximum
κ
RT at 0.2 cationic mole fraction (CMF). Other TMs’ substitution linearly decreased the
κ
RT with increasing substitution amount. Based on the
M
S values of TM- and L-substituted magnetite at 0.1 and 0.02 CMF, respectively, Zn (90.7
emu/g for TOR-39 and 93.2
emu/g for PV-4)- and Mn (88.3
emu/g by PV-4)-substituted magnetite exhibited higher
M
S than standard chemical magnetite (84.7
emu/g) or pure biomagnetite without metal substitution (76.6
emu/g for TOR-39 and 80.3
emu/g for PV-4). Lanthanides tended to decrease
M
S, with Gd- and Ho-substituted magnetites having the highest magnetization. The higher magnetization of microbially synthesized TM-substituted magnetites by the psychrotroph, PV-4 may be explained by the magnetite formation taking place at low temperatures slowing mechanics, which may alter the magnetic properties compared to the thermophile, through suppression of the random distribution of substituted cations.</description><identifier>ISSN: 0304-8853</identifier><identifier>DOI: 10.1016/j.jmmm.2007.01.011</identifier><identifier>CODEN: JMMMDC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Domain effects, magnetization curves, and hysteresis ; Exact sciences and technology ; Lanthanide ; Lanthanides ; Magnetic properties and materials ; Magnetism ; Magnetite ; Magnetization curves, magnetization reversal, hysteresis, barkhausen and related effects ; Microbial synthesis ; Physics ; Transition metal ; Transition metals</subject><ispartof>Journal of Magnetism and Magnetic Materials, 2007-06, Vol.313 (2), p.283-292</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-225bd370a2bdf822466df665503781fdad20fda729f07f4d1f0d62bb33a8b7693</citedby><cites>FETCH-LOGICAL-c387t-225bd370a2bdf822466df665503781fdad20fda729f07f4d1f0d62bb33a8b7693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmmm.2007.01.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18702014$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/931483$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Moon, Ji-Won</creatorcontrib><creatorcontrib>Yeary, Lucas W.</creatorcontrib><creatorcontrib>Rondinone, Adam J.</creatorcontrib><creatorcontrib>Rawn, Claudia J.</creatorcontrib><creatorcontrib>Kirkham, Melanie J.</creatorcontrib><creatorcontrib>Roh, Yul</creatorcontrib><creatorcontrib>Love, Lonnie J.</creatorcontrib><creatorcontrib>Phelps, Tommy J.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Magnetic response of microbially synthesized transition metal- and lanthanide-substituted nano-sized magnetites</title><title>Journal of Magnetism and Magnetic Materials</title><description>The magnetic susceptibility (
κ
RT) and saturation magnetization (
M
S) of microbially synthesized magnetites were systematically examined. Transition metal (Cr, Mn, Co, Ni and Zn)- and lanthanide (Nd, Gd, Tb, Ho and Er)-substituted magnetites were microbially synthesized by the incubation of transition metal (TM)- and lanthanide (L)-mixed magnetite precursors with either thermophilic (TOR-39) or psychrotolerant (PV-4) metal-reducing bacteria (MRB). Zinc incorporated congruently into both the precursor and substituted magnetite, while Ni and Er predominantly did not. Microbially synthesized Mn- and Zn-substituted magnetites had higher
κ
RT than pure biomagnetite depending on bacterial species and they exhibited a maximum
κ
RT at 0.2 cationic mole fraction (CMF). Other TMs’ substitution linearly decreased the
κ
RT with increasing substitution amount. Based on the
M
S values of TM- and L-substituted magnetite at 0.1 and 0.02 CMF, respectively, Zn (90.7
emu/g for TOR-39 and 93.2
emu/g for PV-4)- and Mn (88.3
emu/g by PV-4)-substituted magnetite exhibited higher
M
S than standard chemical magnetite (84.7
emu/g) or pure biomagnetite without metal substitution (76.6
emu/g for TOR-39 and 80.3
emu/g for PV-4). Lanthanides tended to decrease
M
S, with Gd- and Ho-substituted magnetites having the highest magnetization. The higher magnetization of microbially synthesized TM-substituted magnetites by the psychrotroph, PV-4 may be explained by the magnetite formation taking place at low temperatures slowing mechanics, which may alter the magnetic properties compared to the thermophile, through suppression of the random distribution of substituted cations.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Domain effects, magnetization curves, and hysteresis</subject><subject>Exact sciences and technology</subject><subject>Lanthanide</subject><subject>Lanthanides</subject><subject>Magnetic properties and materials</subject><subject>Magnetism</subject><subject>Magnetite</subject><subject>Magnetization curves, magnetization reversal, hysteresis, barkhausen and related effects</subject><subject>Microbial synthesis</subject><subject>Physics</subject><subject>Transition metal</subject><subject>Transition metals</subject><issn>0304-8853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhXMAidLyBziFA9yyjO1s4pW4oIoCUisucLYce0y9SuzF40Vafj0TpRI3pJF9-d7MmzdN81rAToAY3h93x2VZdhJg3IHgEs-aK1DQd1rv1YvmJdERAESvh6smP9ifCWt0bUE65UTY5tAu0ZU8RTvPl5YuqT4ixT_o21psolhjTu2C1c5da5NvZ8uETdFjR-eJaqznynCyKXebbtmGVKSb5nmwM-Grp_-6-XH36fvtl-7-2-evtx_vO6f0WDsp95NXI1g5-aCl7IfBh2HY70GNWgRvvQR-R3kIMIbeiwB-kNOklNXTOBzUdfNm65vZjyHHs92jyymhq-ageHnFzLuNOZX864xUzRLJ4cz7YD6TkQfdM7qCcgM5FaKCwZxKXGy5GAFmzdwczZq5WTM3ILgEi94-dbfk7Bw4Ohfpn1KPIPkIzH3YOOQ4fkcsq1tMDn0sq1mf4__G_AWbwpwg</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Moon, Ji-Won</creator><creator>Yeary, Lucas W.</creator><creator>Rondinone, Adam J.</creator><creator>Rawn, Claudia J.</creator><creator>Kirkham, Melanie J.</creator><creator>Roh, Yul</creator><creator>Love, Lonnie J.</creator><creator>Phelps, Tommy J.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20070601</creationdate><title>Magnetic response of microbially synthesized transition metal- and lanthanide-substituted nano-sized magnetites</title><author>Moon, Ji-Won ; Yeary, Lucas W. ; Rondinone, Adam J. ; Rawn, Claudia J. ; Kirkham, Melanie J. ; Roh, Yul ; Love, Lonnie J. ; Phelps, Tommy J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-225bd370a2bdf822466df665503781fdad20fda729f07f4d1f0d62bb33a8b7693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Domain effects, magnetization curves, and hysteresis</topic><topic>Exact sciences and technology</topic><topic>Lanthanide</topic><topic>Lanthanides</topic><topic>Magnetic properties and materials</topic><topic>Magnetism</topic><topic>Magnetite</topic><topic>Magnetization curves, magnetization reversal, hysteresis, barkhausen and related effects</topic><topic>Microbial synthesis</topic><topic>Physics</topic><topic>Transition metal</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moon, Ji-Won</creatorcontrib><creatorcontrib>Yeary, Lucas W.</creatorcontrib><creatorcontrib>Rondinone, Adam J.</creatorcontrib><creatorcontrib>Rawn, Claudia J.</creatorcontrib><creatorcontrib>Kirkham, Melanie J.</creatorcontrib><creatorcontrib>Roh, Yul</creatorcontrib><creatorcontrib>Love, Lonnie J.</creatorcontrib><creatorcontrib>Phelps, Tommy J.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of Magnetism and Magnetic Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, Ji-Won</au><au>Yeary, Lucas W.</au><au>Rondinone, Adam J.</au><au>Rawn, Claudia J.</au><au>Kirkham, Melanie J.</au><au>Roh, Yul</au><au>Love, Lonnie J.</au><au>Phelps, Tommy J.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic response of microbially synthesized transition metal- and lanthanide-substituted nano-sized magnetites</atitle><jtitle>Journal of Magnetism and Magnetic Materials</jtitle><date>2007-06-01</date><risdate>2007</risdate><volume>313</volume><issue>2</issue><spage>283</spage><epage>292</epage><pages>283-292</pages><issn>0304-8853</issn><coden>JMMMDC</coden><abstract>The magnetic susceptibility (
κ
RT) and saturation magnetization (
M
S) of microbially synthesized magnetites were systematically examined. Transition metal (Cr, Mn, Co, Ni and Zn)- and lanthanide (Nd, Gd, Tb, Ho and Er)-substituted magnetites were microbially synthesized by the incubation of transition metal (TM)- and lanthanide (L)-mixed magnetite precursors with either thermophilic (TOR-39) or psychrotolerant (PV-4) metal-reducing bacteria (MRB). Zinc incorporated congruently into both the precursor and substituted magnetite, while Ni and Er predominantly did not. Microbially synthesized Mn- and Zn-substituted magnetites had higher
κ
RT than pure biomagnetite depending on bacterial species and they exhibited a maximum
κ
RT at 0.2 cationic mole fraction (CMF). Other TMs’ substitution linearly decreased the
κ
RT with increasing substitution amount. Based on the
M
S values of TM- and L-substituted magnetite at 0.1 and 0.02 CMF, respectively, Zn (90.7
emu/g for TOR-39 and 93.2
emu/g for PV-4)- and Mn (88.3
emu/g by PV-4)-substituted magnetite exhibited higher
M
S than standard chemical magnetite (84.7
emu/g) or pure biomagnetite without metal substitution (76.6
emu/g for TOR-39 and 80.3
emu/g for PV-4). Lanthanides tended to decrease
M
S, with Gd- and Ho-substituted magnetites having the highest magnetization. The higher magnetization of microbially synthesized TM-substituted magnetites by the psychrotroph, PV-4 may be explained by the magnetite formation taking place at low temperatures slowing mechanics, which may alter the magnetic properties compared to the thermophile, through suppression of the random distribution of substituted cations.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2007.01.011</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-8853 |
ispartof | Journal of Magnetism and Magnetic Materials, 2007-06, Vol.313 (2), p.283-292 |
issn | 0304-8853 |
language | eng |
recordid | cdi_proquest_miscellaneous_29849313 |
source | Access via ScienceDirect (Elsevier) |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Domain effects, magnetization curves, and hysteresis Exact sciences and technology Lanthanide Lanthanides Magnetic properties and materials Magnetism Magnetite Magnetization curves, magnetization reversal, hysteresis, barkhausen and related effects Microbial synthesis Physics Transition metal Transition metals |
title | Magnetic response of microbially synthesized transition metal- and lanthanide-substituted nano-sized magnetites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T07%3A20%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20response%20of%20microbially%20synthesized%20transition%20metal-%20and%20lanthanide-substituted%20nano-sized%20magnetites&rft.jtitle=Journal%20of%20Magnetism%20and%20Magnetic%20Materials&rft.au=Moon,%20Ji-Won&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2007-06-01&rft.volume=313&rft.issue=2&rft.spage=283&rft.epage=292&rft.pages=283-292&rft.issn=0304-8853&rft.coden=JMMMDC&rft_id=info:doi/10.1016/j.jmmm.2007.01.011&rft_dat=%3Cproquest_osti_%3E29849313%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29849313&rft_id=info:pmid/&rft_els_id=S0304885307000170&rfr_iscdi=true |