Performance of a recirculating wetland filter designed to remove particulate phosphorus for restoration of Lake Apopka (Florida, USA)
Operation of a 14-km2 wetland filter for removal of total phosphorus (TP) from lake water is part of the restoration program for hypereutrophic Lake Apopka, Florida. This system differs from most treatment wetlands because 1) water is recirculated back to the lake, and 2) the goal is removal of part...
Gespeichert in:
Veröffentlicht in: | Water science and technology 2001-01, Vol.44 (11-12), p.131-136 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 136 |
---|---|
container_issue | 11-12 |
container_start_page | 131 |
container_title | Water science and technology |
container_volume | 44 |
creator | COVENEY, M. F LOWE, E. F BATTOE, L. E |
description | Operation of a 14-km2 wetland filter for removal of total phosphorus (TP) from lake water is part of the restoration program for hypereutrophic Lake Apopka, Florida. This system differs from most treatment wetlands because 1) water is recirculated back to the lake, and 2) the goal is removal of particulate phosphorus (P), the dominant form of P in Lake Apopka. The operational plan for the wetland is maximization of the rate rather than the efficiency of P removal. The St. Johns River Water Management District operated a 2-km2 pilot-scale wetland to examine the capacity of a wetland system to remove suspended solids and particulate nutrients from Lake Apopka. TP in the inflow from Lake Apopka ranged from about 0.12 to 0.23 mg l(-1), and hydraulic loading rate (HLR) varied from 6.5 to 42 m yr(-1). The performance of the pilot-scale wetland supported earlier predictions. Mass removal efficiencies for TP varied between about 30% and 67%. A first-order, area-based model indicated a rate constant for TP removal of 55 m yr(-1). We compared actual removal of P with model predictions and used modeled performance to examine optimal operational conditions. Correspondence between observed and modeled outflow TP was not good with constant variable values. Monte Carlo techniques used to introduce realistic stochastic variability improved the fit. The model was used to project a maximal rate of P removal of about 4 g P m(-2) yr(-1) at P loading 10-15 g P m(-2) yr(-1) (HLR 60-90 m yr(-1)). Data from the pilot wetland indicated that actual rates of P removal may prove to be higher. Further operation of the wetland at high hydraulic and P loading rates is necessary to verify or modify the application of the model. |
doi_str_mv | 10.2166/wst.2001.0819 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29842990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1024648465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-7b8190b027432190aee340e1ff816d8c9f2a316ee260321cca882b81df03b9a03</originalsourceid><addsrcrecordid>eNqNkl9r1TAYxoN_cGfTS28lIJMJ9ph_TZPLw3A6OKCguy456ZvZrW1q0m74Afzee-sODLxQL0JC-OWXPOEh5CVna8G1fn-bp7VgjK-Z4fYRWXFrdWErKR6TQ26UlFaxSj4hKyYqWXAh5AE5zPmKMdxW7Bk54NwwxYxakV9fIIWYejd4oDFQRxP4Nvm5c1M7XNJbmDo3NDS03QSJNpDbywEaOkUE-3gDdHRpan_zuP4eM440Z4pSJPIUE4risLi37hroZozjtaMnZ11MbePe0Yuvm7fPydPgugwv9vMRuTj78O30U7H9_PH8dLMtvKrkVFQ7DMx2GEtJgSsHgHmAh2C4boy3QTjJNYDQDAHvnTECzzSByZ11TB6RN_feMcUfM76u7tvsocOIEOdcC2uUsPZ_wFKUqiz_CXLNFdPGIHjyd5AJpZVRenG-_gO9inMa8GNqbhUm5qWwSBX3lE8x5wShHlPbu_QTVfXSkxp7Ui89qZeeIP9qb513PTQP9L4LCBzvAZe960LCTrT5gVOsFAzvvwMZcMLH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943401529</pqid></control><display><type>article</type><title>Performance of a recirculating wetland filter designed to remove particulate phosphorus for restoration of Lake Apopka (Florida, USA)</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>COVENEY, M. F ; LOWE, E. F ; BATTOE, L. E</creator><contributor>Reddy, KR ; Kadlec, RH</contributor><creatorcontrib>COVENEY, M. F ; LOWE, E. F ; BATTOE, L. E ; Reddy, KR ; Kadlec, RH</creatorcontrib><description>Operation of a 14-km2 wetland filter for removal of total phosphorus (TP) from lake water is part of the restoration program for hypereutrophic Lake Apopka, Florida. This system differs from most treatment wetlands because 1) water is recirculated back to the lake, and 2) the goal is removal of particulate phosphorus (P), the dominant form of P in Lake Apopka. The operational plan for the wetland is maximization of the rate rather than the efficiency of P removal. The St. Johns River Water Management District operated a 2-km2 pilot-scale wetland to examine the capacity of a wetland system to remove suspended solids and particulate nutrients from Lake Apopka. TP in the inflow from Lake Apopka ranged from about 0.12 to 0.23 mg l(-1), and hydraulic loading rate (HLR) varied from 6.5 to 42 m yr(-1). The performance of the pilot-scale wetland supported earlier predictions. Mass removal efficiencies for TP varied between about 30% and 67%. A first-order, area-based model indicated a rate constant for TP removal of 55 m yr(-1). We compared actual removal of P with model predictions and used modeled performance to examine optimal operational conditions. Correspondence between observed and modeled outflow TP was not good with constant variable values. Monte Carlo techniques used to introduce realistic stochastic variability improved the fit. The model was used to project a maximal rate of P removal of about 4 g P m(-2) yr(-1) at P loading 10-15 g P m(-2) yr(-1) (HLR 60-90 m yr(-1)). Data from the pilot wetland indicated that actual rates of P removal may prove to be higher. Further operation of the wetland at high hydraulic and P loading rates is necessary to verify or modify the application of the model.</description><identifier>ISSN: 0273-1223</identifier><identifier>ISBN: 1843394073</identifier><identifier>ISBN: 9781843394075</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2001.0819</identifier><identifier>PMID: 11804084</identifier><identifier>CODEN: WSTED4</identifier><language>eng</language><publisher>London: IWA Publishing</publisher><subject>Animal, plant and microbial ecology ; Applied ecology ; Applied sciences ; artificial wetlands ; Biological and medical sciences ; Biological treatment of waters ; Biotechnology ; Capacity ; Computer simulation ; Conservation of Natural Resources ; Continental surface waters ; Data processing ; Earth sciences ; Earth, ocean, space ; Ecosystem ; Ecotoxicology, biological effects of pollution ; Engineering and environment geology. Geothermics ; Environment and pollution ; Environmental Monitoring ; Eutrophication ; Exact sciences and technology ; Filtration ; Florida ; Fresh water environment ; Freshwater ; Fundamental and applied biological sciences. Psychology ; Hydraulic loading ; Industrial applications and implications. Economical aspects ; Inflow ; Lakes ; Load distribution ; Loading rate ; Mathematical models ; Mineral nutrients ; Models, Theoretical ; Natural water pollution ; Nutrients ; Optimization ; Outflow ; Phosphorus ; Phosphorus - metabolism ; Phosphorus removal ; Plants ; Pollution ; Pollution, environment geology ; Removal ; Restoration ; River water ; Rivers ; Statistical methods ; Stochasticity ; Suspended particulate matter ; Suspended solids ; USA, Florida, Apopka L ; Water inflow ; Water management ; Water Movements ; Water outflow ; Water Pollution - prevention & control ; Water purification ; Water treatment and pollution ; Wetlands</subject><ispartof>Water science and technology, 2001-01, Vol.44 (11-12), p.131-136</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright IWA Publishing Dec 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-7b8190b027432190aee340e1ff816d8c9f2a316ee260321cca882b81df03b9a03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>310,311,315,781,785,790,791,23935,23936,25145,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14052094$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11804084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Reddy, KR</contributor><contributor>Kadlec, RH</contributor><creatorcontrib>COVENEY, M. F</creatorcontrib><creatorcontrib>LOWE, E. F</creatorcontrib><creatorcontrib>BATTOE, L. E</creatorcontrib><title>Performance of a recirculating wetland filter designed to remove particulate phosphorus for restoration of Lake Apopka (Florida, USA)</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>Operation of a 14-km2 wetland filter for removal of total phosphorus (TP) from lake water is part of the restoration program for hypereutrophic Lake Apopka, Florida. This system differs from most treatment wetlands because 1) water is recirculated back to the lake, and 2) the goal is removal of particulate phosphorus (P), the dominant form of P in Lake Apopka. The operational plan for the wetland is maximization of the rate rather than the efficiency of P removal. The St. Johns River Water Management District operated a 2-km2 pilot-scale wetland to examine the capacity of a wetland system to remove suspended solids and particulate nutrients from Lake Apopka. TP in the inflow from Lake Apopka ranged from about 0.12 to 0.23 mg l(-1), and hydraulic loading rate (HLR) varied from 6.5 to 42 m yr(-1). The performance of the pilot-scale wetland supported earlier predictions. Mass removal efficiencies for TP varied between about 30% and 67%. A first-order, area-based model indicated a rate constant for TP removal of 55 m yr(-1). We compared actual removal of P with model predictions and used modeled performance to examine optimal operational conditions. Correspondence between observed and modeled outflow TP was not good with constant variable values. Monte Carlo techniques used to introduce realistic stochastic variability improved the fit. The model was used to project a maximal rate of P removal of about 4 g P m(-2) yr(-1) at P loading 10-15 g P m(-2) yr(-1) (HLR 60-90 m yr(-1)). Data from the pilot wetland indicated that actual rates of P removal may prove to be higher. Further operation of the wetland at high hydraulic and P loading rates is necessary to verify or modify the application of the model.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Applied sciences</subject><subject>artificial wetlands</subject><subject>Biological and medical sciences</subject><subject>Biological treatment of waters</subject><subject>Biotechnology</subject><subject>Capacity</subject><subject>Computer simulation</subject><subject>Conservation of Natural Resources</subject><subject>Continental surface waters</subject><subject>Data processing</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Ecosystem</subject><subject>Ecotoxicology, biological effects of pollution</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Environment and pollution</subject><subject>Environmental Monitoring</subject><subject>Eutrophication</subject><subject>Exact sciences and technology</subject><subject>Filtration</subject><subject>Florida</subject><subject>Fresh water environment</subject><subject>Freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydraulic loading</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Inflow</subject><subject>Lakes</subject><subject>Load distribution</subject><subject>Loading rate</subject><subject>Mathematical models</subject><subject>Mineral nutrients</subject><subject>Models, Theoretical</subject><subject>Natural water pollution</subject><subject>Nutrients</subject><subject>Optimization</subject><subject>Outflow</subject><subject>Phosphorus</subject><subject>Phosphorus - metabolism</subject><subject>Phosphorus removal</subject><subject>Plants</subject><subject>Pollution</subject><subject>Pollution, environment geology</subject><subject>Removal</subject><subject>Restoration</subject><subject>River water</subject><subject>Rivers</subject><subject>Statistical methods</subject><subject>Stochasticity</subject><subject>Suspended particulate matter</subject><subject>Suspended solids</subject><subject>USA, Florida, Apopka L</subject><subject>Water inflow</subject><subject>Water management</subject><subject>Water Movements</subject><subject>Water outflow</subject><subject>Water Pollution - prevention & control</subject><subject>Water purification</subject><subject>Water treatment and pollution</subject><subject>Wetlands</subject><issn>0273-1223</issn><issn>1996-9732</issn><isbn>1843394073</isbn><isbn>9781843394075</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkl9r1TAYxoN_cGfTS28lIJMJ9ph_TZPLw3A6OKCguy456ZvZrW1q0m74Afzee-sODLxQL0JC-OWXPOEh5CVna8G1fn-bp7VgjK-Z4fYRWXFrdWErKR6TQ26UlFaxSj4hKyYqWXAh5AE5zPmKMdxW7Bk54NwwxYxakV9fIIWYejd4oDFQRxP4Nvm5c1M7XNJbmDo3NDS03QSJNpDbywEaOkUE-3gDdHRpan_zuP4eM440Z4pSJPIUE4risLi37hroZozjtaMnZ11MbePe0Yuvm7fPydPgugwv9vMRuTj78O30U7H9_PH8dLMtvKrkVFQ7DMx2GEtJgSsHgHmAh2C4boy3QTjJNYDQDAHvnTECzzSByZ11TB6RN_feMcUfM76u7tvsocOIEOdcC2uUsPZ_wFKUqiz_CXLNFdPGIHjyd5AJpZVRenG-_gO9inMa8GNqbhUm5qWwSBX3lE8x5wShHlPbu_QTVfXSkxp7Ui89qZeeIP9qb513PTQP9L4LCBzvAZe960LCTrT5gVOsFAzvvwMZcMLH</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>COVENEY, M. F</creator><creator>LOWE, E. F</creator><creator>BATTOE, L. E</creator><general>IWA Publishing</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7ST</scope><scope>SOI</scope><scope>7TV</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20010101</creationdate><title>Performance of a recirculating wetland filter designed to remove particulate phosphorus for restoration of Lake Apopka (Florida, USA)</title><author>COVENEY, M. F ; LOWE, E. F ; BATTOE, L. E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-7b8190b027432190aee340e1ff816d8c9f2a316ee260321cca882b81df03b9a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Applied sciences</topic><topic>artificial wetlands</topic><topic>Biological and medical sciences</topic><topic>Biological treatment of waters</topic><topic>Biotechnology</topic><topic>Capacity</topic><topic>Computer simulation</topic><topic>Conservation of Natural Resources</topic><topic>Continental surface waters</topic><topic>Data processing</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Ecosystem</topic><topic>Ecotoxicology, biological effects of pollution</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Environment and pollution</topic><topic>Environmental Monitoring</topic><topic>Eutrophication</topic><topic>Exact sciences and technology</topic><topic>Filtration</topic><topic>Florida</topic><topic>Fresh water environment</topic><topic>Freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydraulic loading</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Inflow</topic><topic>Lakes</topic><topic>Load distribution</topic><topic>Loading rate</topic><topic>Mathematical models</topic><topic>Mineral nutrients</topic><topic>Models, Theoretical</topic><topic>Natural water pollution</topic><topic>Nutrients</topic><topic>Optimization</topic><topic>Outflow</topic><topic>Phosphorus</topic><topic>Phosphorus - metabolism</topic><topic>Phosphorus removal</topic><topic>Plants</topic><topic>Pollution</topic><topic>Pollution, environment geology</topic><topic>Removal</topic><topic>Restoration</topic><topic>River water</topic><topic>Rivers</topic><topic>Statistical methods</topic><topic>Stochasticity</topic><topic>Suspended particulate matter</topic><topic>Suspended solids</topic><topic>USA, Florida, Apopka L</topic><topic>Water inflow</topic><topic>Water management</topic><topic>Water Movements</topic><topic>Water outflow</topic><topic>Water Pollution - prevention & control</topic><topic>Water purification</topic><topic>Water treatment and pollution</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>COVENEY, M. F</creatorcontrib><creatorcontrib>LOWE, E. F</creatorcontrib><creatorcontrib>BATTOE, L. E</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>COVENEY, M. F</au><au>LOWE, E. F</au><au>BATTOE, L. E</au><au>Reddy, KR</au><au>Kadlec, RH</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of a recirculating wetland filter designed to remove particulate phosphorus for restoration of Lake Apopka (Florida, USA)</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2001-01-01</date><risdate>2001</risdate><volume>44</volume><issue>11-12</issue><spage>131</spage><epage>136</epage><pages>131-136</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><isbn>1843394073</isbn><isbn>9781843394075</isbn><coden>WSTED4</coden><abstract>Operation of a 14-km2 wetland filter for removal of total phosphorus (TP) from lake water is part of the restoration program for hypereutrophic Lake Apopka, Florida. This system differs from most treatment wetlands because 1) water is recirculated back to the lake, and 2) the goal is removal of particulate phosphorus (P), the dominant form of P in Lake Apopka. The operational plan for the wetland is maximization of the rate rather than the efficiency of P removal. The St. Johns River Water Management District operated a 2-km2 pilot-scale wetland to examine the capacity of a wetland system to remove suspended solids and particulate nutrients from Lake Apopka. TP in the inflow from Lake Apopka ranged from about 0.12 to 0.23 mg l(-1), and hydraulic loading rate (HLR) varied from 6.5 to 42 m yr(-1). The performance of the pilot-scale wetland supported earlier predictions. Mass removal efficiencies for TP varied between about 30% and 67%. A first-order, area-based model indicated a rate constant for TP removal of 55 m yr(-1). We compared actual removal of P with model predictions and used modeled performance to examine optimal operational conditions. Correspondence between observed and modeled outflow TP was not good with constant variable values. Monte Carlo techniques used to introduce realistic stochastic variability improved the fit. The model was used to project a maximal rate of P removal of about 4 g P m(-2) yr(-1) at P loading 10-15 g P m(-2) yr(-1) (HLR 60-90 m yr(-1)). Data from the pilot wetland indicated that actual rates of P removal may prove to be higher. Further operation of the wetland at high hydraulic and P loading rates is necessary to verify or modify the application of the model.</abstract><cop>London</cop><pub>IWA Publishing</pub><pmid>11804084</pmid><doi>10.2166/wst.2001.0819</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-1223 |
ispartof | Water science and technology, 2001-01, Vol.44 (11-12), p.131-136 |
issn | 0273-1223 1996-9732 |
language | eng |
recordid | cdi_proquest_miscellaneous_29842990 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | Animal, plant and microbial ecology Applied ecology Applied sciences artificial wetlands Biological and medical sciences Biological treatment of waters Biotechnology Capacity Computer simulation Conservation of Natural Resources Continental surface waters Data processing Earth sciences Earth, ocean, space Ecosystem Ecotoxicology, biological effects of pollution Engineering and environment geology. Geothermics Environment and pollution Environmental Monitoring Eutrophication Exact sciences and technology Filtration Florida Fresh water environment Freshwater Fundamental and applied biological sciences. Psychology Hydraulic loading Industrial applications and implications. Economical aspects Inflow Lakes Load distribution Loading rate Mathematical models Mineral nutrients Models, Theoretical Natural water pollution Nutrients Optimization Outflow Phosphorus Phosphorus - metabolism Phosphorus removal Plants Pollution Pollution, environment geology Removal Restoration River water Rivers Statistical methods Stochasticity Suspended particulate matter Suspended solids USA, Florida, Apopka L Water inflow Water management Water Movements Water outflow Water Pollution - prevention & control Water purification Water treatment and pollution Wetlands |
title | Performance of a recirculating wetland filter designed to remove particulate phosphorus for restoration of Lake Apopka (Florida, USA) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T22%3A57%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20a%20recirculating%20wetland%20filter%20designed%20to%20remove%20particulate%20phosphorus%20for%20restoration%20of%20Lake%20Apopka%20(Florida,%20USA)&rft.jtitle=Water%20science%20and%20technology&rft.au=COVENEY,%20M.%20F&rft.date=2001-01-01&rft.volume=44&rft.issue=11-12&rft.spage=131&rft.epage=136&rft.pages=131-136&rft.issn=0273-1223&rft.eissn=1996-9732&rft.isbn=1843394073&rft.isbn_list=9781843394075&rft.coden=WSTED4&rft_id=info:doi/10.2166/wst.2001.0819&rft_dat=%3Cproquest_cross%3E1024648465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943401529&rft_id=info:pmid/11804084&rfr_iscdi=true |